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. NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECENICAL NOTE 2593

DESIGN OF TWO-DIMENSIONAL CHANNELS WITH PRESCRIBED
VELOCITY DISTRIBUTIONS ALONG THE CHANNEL WALLS
I - RELAXATION SOLUTIONS

By John D. Stanitz

SUMMARY

A genefal method of design is developed for two-dimensional
unbranched channels with prescribed velocities as a function of arc
length along the channel walls. The method is developed for both
incompressible and compressible, irrotational, nonviscous flow. Two
types of compressible flow are considered: the general type, with the
ratio of specific heats 7y equal to 1.4, for example, and the linear-
ized type in which ¢y is equal to -1.0. The design method gives com-
plete information concerning the flow throughout the channel.

Five numerical examples are given including three elbow designs
with the same prescribed velocity as a function of arc length along the
channel walls but with incompressible, linearized compressible, and }
compressible flow. It is concluded that if a nonviscous gas with '
arbitrary v (1.4, for example) were to flow through a channel designed
for linearized compressible flow (y = -1.0), the resulting velocity
distribution along the channel walls would be nearly the velocity dis-
tribution prescribed for the linearized compressible flow, at least if
the linearized flow were selected so that the densities are equal for
both types of flow at the maximum and minimum velocities and if the
ratio of these velocities is not too large (2:1 in the numerical

examples) .

INTRODUCTION

There are two general types of theoretical problem in two-
dimensional fluid motion: (1) the direct problem, in which the distri-
bution of velocity is determined for a prescribed shape of boundary,
and. (2) the inverse problem, in which the shape of boundary is determined
for a prescribed distribution of velocity along the boundary. The direct
problem is an analysis problem; the inverse problem is a design problem. -
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This report is concerned with the inverse, or design, problem for two-
dimensional, irrotational flow in unbranched channels with prescribed
velocities as a function of arc length along the channel walls.

The design of channels with prescribed velocities is important
because: (1) Boundary-layer separation losses can be avoided by pre-
scribed velocities that do not decelerate rapidly enough to cause
separation, (2) shock losses in compressible flow and cavitation
in incompressible flow can be avoided by prescribed velocities that do
not exceed certain maximum values dictated by these phenomena, and
(3) for compressible flow the desired flow rate can be assured by pre-
scribed velocities that do not result in "choke flow" conditions.

Several methods of channel design have been developed for particular
application (references 1 and 2, for example). In reference 1 a design
method is developed for accelerating elbows in which the velocity
increases monotonically along the channel walls. The method is developed
for incompressible and linearized (y = -1.0) compressible flow. The
velocity distribution along the channel walls is not arbitrary and the
design method applies to elbows only. In reference 2 a design method is
developed for straight, symmetrical channels with contracting or expand-
ing walls. The method is developed for incompressible flow and the
velocities are prescribed not as a function of arc length along the
channel walls but as a function of circle angle in the transformed circle
plane. A more general design is suggested in reference 3 but no attempt
is made to develop and apply the method.

In the present report a general method of design is developed for
two-dimensional, unbranched channels with prescribed velocities as a
function of arc length along the channel walls. The method is developed
for both compressible and incompressible, irrotational, nonviscous flow
and applies to the design of elbows, diffusers, nozzles, and so forth.
Two types of compressible flow are considered: the general type with
arbitrary value of y (1.4, for example) and the linearized type with
Y equal to -1.0. In general, if the prescribed velocity along one
channel wall differs from that along the other, the channel turns so
that the downstream flow direction is different from the upstream
direction. This change in flow direction cannot be arbitrarily chosen
but depends on the prescribed velocity distribution along the walls.
Equations are developed for computing this change in flow direction for
an arbitrary prescribed velocity distribution with incompressible or
linearized compressible flow. Two methods of solution have been devel-
oped for the design method and are presented in separate reports. In
this report (part I) solutions are obtained by relaxation methods
(reference 4). This method of solution results in complete information
concerning the distribution of flow conditions throughout the channel
and, in addition, can be used to obtain nonlinear solutions for com-
pressible flow with arbitrary values of y. In reference 5 (part II)
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“solutions are obtained by means of a Green's function. This method of

solution is limited to incompressible and linearized (y = -1.0) com~
pressible flow, but the method is more rapid than relaxation methods,
provided information within the channel is not required.

The design method reported herein was developed at the NACA Iewis
laboratory during 1950 and is part of a doctoral thesis conducted with
the advice of Professor Ascher H. Shapiro of the Massachusetts Institute
of Technology. ’

THEORY OF DESIGN METHOD

The design method is developed for two-dimensional channels with
prescribed velocities along the channel walls. The prescribed velocity -
is arbitrary except that stagnation points (zero velocity) cannot be
prescribed. This exception limits the design method to unbranched
channels. ' '

Preliminary Considerations

Assumptions. - The fluid is assumed to be nonviscous and either
compressible or incompressible. The flow is assumed to be two-
dimensional and irrotational. :

The assumption of two-dimensional, nonviscous, irrotational motion
limits the design method in practice to channels with thin (negligible)
boundary layers,'such as exist near the entrance to the channel or after
a rapid acceleration of the flow through a contraction in the channel.
Even if the boundary layer is thin, the design method is limited to (and
finds its most useful application for) prescribed velocity distributions
that, from boundary-layer theory, do not decelerate fast enough to
result in separation of the boundary layer, which separation alters the
"effective" shape of the channel and completely changes the character of
the flow. ' '

In some channels with fully developed turbulent boundary layers the
design method might be expected to yield results that are satisfactory
(although approximate) because for this type of flow the rotational
motion occurs primarily in the regions close to the channel walls. In
channel walls with thick or fully developed laminar boundary layers the
design method cannot be used, because not only is the rotation of the
flow important in most of the channel but, if the channel bends,
important secondary flows develop that are not considered by the two-
dimensional design method.
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Flow field. - The flow field of the two-dimensional channel is con-
sidered to lie in the physical xy-plane where x and y are Cartesian
coordinates expressed as ratios of a characteristic length equal to the
constant channel width downstream at infinity. (All symbols are defined
in appendix A.)

At each point in the channel (fig. 1) the velocity vector has a
magnitude Q and a direction 6 where Q is the fluid velocity
expressed as the ratio of a characteristic velocity equal to the con-
stant channel velocity downstream at infinity. For convenience, the
velocity Q is related to a velocity q by

9= Qag (1)

where q is the velocity expressed as a ratio of the stagnation speed
of sound and the subscript 4 refers to conditions downstream at
infinity.

The flow direction 6 at each point in the channel is measured
counterclockwise from the positive x-axis. From figure 1

dx = ds cos 6 (2a)

ds sin 0 (2v)

dy

where ds is a differential distance in the direction of Q, that is,
along a streamline.

Stream function and ‘velocity potential. - If the condition of con-
tinuity is satisfied a stream function V¥ can be defined such that

vy = pQ dn (3)

where p 1is the fluid density expressed as the ratio of a characteristic
density equal to the stagnation density and where dn is a differential
distance measured normal to the direction of Q, that is, normal to a
streamline. Along a streamline, dn is zero so that from equation (3)
the stream function V is constant.

If the condition of irrotational fluid motion is satisfied a
velocity potential o can be defined such that

dp = q ds (4)
Normal to a streamline, ds 1is zero so that from equation (4) the

velocity potential ®@ is constant. Thus lines of constant ‘@ and V
are orthogonal in the physical xy-plane. :

(o .
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Outline of method. - Solutions for two-dimensional flow depend on
known conditions imposed along the boundaries of the problem. In the
inverse problem of channel design the geometry of the channel walls in
the physical xy-plane is unknown. This unknown geometry apparently
precludes the possibility of solving the problem in the physical plane
and necessitates the use of some new set of coordinates, that is, a
transformed plane, in which to solve the problem. These new coordinates
must be such that the geometric boundaries along which the velocities _
are prescribed are known in the transformed plane. It is also desirable,
for mathematical simplicity, that the coordinate system in the trans-
formed plane be orthogonal in the physical plane. A set of coordinates
that satisfies these requirements is provided by o and V, which are
orthogonal in the physical xy-plane and for which the geometric bound-
aries are known constant values of VY in the transformed th-plane.

The distribution of velocity as a function of ¢ along these boundaries
of constant i 1is known because, if

Q = Q(s)

is prescribed, equation (4) integrates to give

©=o(s)

- From which equations,

Q= Qo)

. The technique of the proposed method of channel design is therefore
to obtain a differential equation for the distribution of velocity in
the coy-plane. The velocity distribution obtained from the solution of
this equation is then used to obtain the distribution of flow direction,
from which distribution the channel walls in the physical xy-plane are
obtained directly. The differential equation for the distribution of
velocity in the ¢oV-plane is nonlinear (for compressible flow with 7y
other than -1.0) and is solved by numerical methods (relaxation methods).

Differential Equation for Distribution of Velocity

in Transformed oV-Plane

The differential equation'for the distribution of velocity in the
transformed o\ -plane is obtained from the equations for continuity and

. irrotational fluid motion expressed in terms of the transformed coordi-

nates ® and V.
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Continuity. - The continuity equation expressed in terms of ® and

V  becomes (appendix B):

b Sp * 36 5 = ©

Irrotational fluid motion. - The equation for irrotational fluid
motion, expressed in terms of ¢ and ¥, becomes (appendix B):

E(B loge , O logg Q> L0 (5)

alogeQ ae
Py " Sp-© - (8)

Differential equation for distribution of velocity. - The second
order partial differential equation for the distribution of loge Q
in the transformed gy-plane is obtained by differentiating equations (5)
and (6) with respect to ¢ and vV, respectively, and combining to

eliminate %&; . Thus,

32 log, p d2 log, @ O logg p <8 log, p O log Q)
+ +

3ol + S - o dp o

2
o O loge Q O logg p 28 log, Q

3 A (7)

p

Equation (7), together with a relation between p, @, and qg, determines |

the distribution of loge Q in the opy-plane for compressible flow with
& given value of qg and for arbitrarily prescribed variations in
log, Q@ along the boundaries of constant V.

Density. - The density p is related to the velocity q by
(reference 6, p. 26, for example)

=5
p=<l-ﬂr—é&qz)Y (8a)

which, from equation (1), becomes

- 2
p=<1-Y_2%qud) (8b)

2306
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Equation (8b) relates the density p to the velocity Q for a given
value of ag - '

Incompressible flow. - For incompressible flow p 1is constant and
equal to 1.0 so that equation (7) becomes

32 log, Q 3t log, Q‘
= + =0 ' : (9)
oy oy

Equation (9) determines the distribution of loge Q@ in the oy-plane
for inccmpressible flow.

Channel Wall Geometry

After equation (7) or (9) has been solved to obtain the distribution
of loge Q in the transformed y-plane (for arbitrary variations in
loge Q with \m along the boundaries of constant ¥), the geometry of
the channel walls in the physical xy-plane can be determined from the
resulting distribution of flow direction 6.

Flow direction 6. - The distribution of flow direction 6 alongby
a streamline (constant ) is obtained from equation (6), which inte-
grates to give ’

o log, Q
=] p Sy 4@ (10a)
v

where the subscript ¢ indicates that the integration is taken along &

‘line of constant ¥ and where the constant of integration is selected

to give a known value of 6@ at one value of ¢® along each streamline.
The integrand in equation (10a) is obtained from the distribution of
log, Q, which is known from the solution of equation (7) or (9).

The distribution of flow direction 6 along a velocity-potential
line (constant ®) is obtained from equation (5), which integrates to
give

' d log, p O log Q> |
1 e e
6 = f 5< - + —3 ‘ dy (10b)
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where the subscript o indicates that the integration is taken along

a line of constant ¢ and where the constant of integration is selected
to give a known value of 6 at one value of V¥ along each velocity-
potential line. As for equation (10a), the integrand in equation (10b)
is known from the distribution of loge Q obtained from the solution

of equation (7) or (9).

Channel wall coordinates. - The variation in x along & line of
constant ¥ in the @V¥y-plane is given by

x _ (dx ds
v \ds a9 ¥

which, combined with equations (2a) and (4), integrates to give

X =f-9-°—§——q a® (11a)
W, Q

_ _ [ sin 6 '
x = /c; oq (11b)

Likewise,

y =fSin o a® (11lc) -
w Q

cos 6
Yy = /q: o v (114)

where the constants of integration are selected to give known values of
X or y at one value of @ along each streamline or at one value of

¥ along each velocity-potential line. Equations (1la) to (11d) deter-
mine the distribution of x and y in the transformed oVy-plane or,
which is the same thing, the shape of the streamlines and velocity-
potential lines in the physical xy-plane. In particular, equatilons (lla)
and (1lc) when integrated along the boundaries of constant ¥ in the
py-plane determine the shape of the channel walls.

Turning angle. - In general, if the prescribed velocity distribution
along one channel wall differs from the distribution along the other
wall, the channel deflects an amount Af, which is the difference in
flow direction far downstream and far upstream of the region in which
the prescribed velocity distribution varies. In reference 5 it is shown
that for incompressible flow the turning angle A6 is given by

ARSI
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Mo=6y-0, .
é ) log, Q\ (8 log, Q) ,
"o PN o T\ T /ol - ()

where the subscript u refers to conditions upstream at infinity and
where the subscripts O and 1.0 refer to the channel boundaries along

which ¥ equals O and 1.0, respectively. A similar equation will be
given later for the case of linearized compressible flow.

i

Linearized Compressible Flow

The nonlinear differential equation (7) for the distribution of
velocity in the ¢y-plane with compressible flow becomes linear and is
considerably simplified if a linear variation in pressure with specific
volume (l/p) is assumed. This linear relation between pressure and
specific volume was first suggested by Chaplygin (reference 7) in order
to linearize the differential equations for two-dimensional compressible
flow in the hodograph plane. :

" Density. - If a linear variation in pressure with specific volume
is assumed, the density p* is related to the velocity q* “by
(appendix C) . :

o = (14 %)L o (13)
wWhere
p* = kip . (13a)
and |
h = kyq - | \ o ;(155)

where the constants kl and ks, have been determihea'so that values
of p given by equation (13) equal the valués of p given by equa-
tion (8a) for any two selected values of q (designated by q, and.

qy). Thus, '
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2

1 _<pa q&)
1 Py Iy

kl = 7 | (.14.-&)

()
dy

and

2
1 Py

K. = — 14b
27 q 6, T\ (14p)
1 -
Pp %

where Py and Py are determined by equation (8a) for the selected
values of qg and Qs respectively. A discussion of the selection of

4 and qb is given later. It will be noted that, if y is equal to
-1.0, equation (8a) has the same form as equation (13).

Stream function and velocity potential. - For the case of linearized

compressible flow it is convenient to define the stream function ¢* and
the velocity potential ®* by

dy* = p*q* dn (15)
and
d9* = q* ds (16)
Continuity.v— The continuity equation expressed in terms of o*

and Y* becomes (appendix D)

5 10ge u J6

o + i 0 (17)

where

u= —2 | (18)

2306
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or, conversely

Q= ‘ (19)
1 - u2 :
Irrotational fluid motion. - The equation for irrotaﬁional fluid

motion, expressed in terms of ®* and y* becomes (appendix D)

o log u , .
' e _ 69*:_ 0 (20)
oy * P -

Differential equation for distribution of loge u. - The partial
differential equation for the distribution of loge u 1in the q>*¢*—plane

is obtained by differentiating equations (17) and (20) with respect to

2
o* and W*, respectively, and combining to eliminate S—g—g—;. Thus
o oy
3% log_ u d? log_ u
e e
> + e =0 (21)
o oy .

Equation (21) determines the distribution of log, u in <p*w*ﬁplane for
linearized compressible flow with a given value of qq and for arbi-

trarily prescribed variations in log, Q, related to log, u by egua-

tions (1), (13b), and (18), along the boundaries of constant y*. '
Equation (21) is linear and is, like equation (9) for the case of incom-
pressible flow, the equation of Laplace. Thus an incompressible flow
solution for the distribution of log, Q in the ®y-plane is also a
linearized compressible flow solution for the distribution of log, u

in the *y*-plane. The transformation from the oy-plane is different,
however, from the transformation from the @*{*-plane so that different
channel shapes result in the xy-plane.

Flow direction 6. - The distribution of flow direction 6 along
a streamline (constant ") is obtained from equation (20), which inte-

grates to give
0 log wu .
e . o )
-,9=_f-,—aw;—,dcp . (zza)
Lo Myx OV A L : :
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Likewise, the distribution of flow direction 6 along a velocity-
potential line (constant ¢*) is obtained from eguation (17), which
integrates to give

0 log. u
6 = _u/\ -—g-iﬁ—- ay* " (22b)
ot 7

Equations (22a) and (22b) for linearized compressible flow correspond
to, and are used in the same manner as, equations (10a) and (10b) for
the usual type of compressible or incompressible flow.

 Channel wall coordinates. - The variation in x along a line of
constant y* 1in the *y*-plane is given by

ox dx ds
9 = (35 gt y*

which combined with equations (2a) and (16) integrates to give

- f 08 0 4oon (232)
yr 9
Likewise,
sin 0O
X = = d\p’* 23b
u/i p*q* (250)
@
sin 6 *
y = '? dCP (230)
Y*
cos 6 * .
o+ p*a

Equations (23a) to (23d) determine the distribution of x and ¥y 1in the
transformed o* y*-plane or, which is the same thing, the shape of the
streamline and velocity-potential lines in the physical xy-plane. In

w

- 2306

ha

P




L3

90g2

&

(14

o«

NACA TN 2593 . 13

particular, equations (23a) and (23c), when integrated along the bound-
aries of constant * in the ¢*y*-plane, determine the shape of the
channel walls. Equations (23a) to (23d) for linearized compressible
flow correspond to, and are used in the same manner as, equations (1la)
to (11d) for the usual type of compressible or incompressible flow.

Turning angle. - In reference 5 it is shown that for linearized
compressible flow the turning angle, or difference .in flow direction
far downstream and far upstream of the region in which the prescribed
velocity distribution varies along the channel walls, is given by

a1 (1° . O logg u\ O log, u *l
8 cp< 0P >A¢*-<v & )o| "7 @

where Ay* is the value of * alohg the left boundary (channel wall)

when faced in the direction of flow if the value of W* along the right'

boundary is zero and where the subscript Ay* refers to the boundary
along which y* 1is equal to Ay*.

NUMERICAL PROCEDURE

The channel design method of this report was developed for three
types of fluid flow: (l ) compressible, (2) incompressible, and
(3) linearized compressible. Although the numerical procedures of the
design method are similar for each type of fluid, the procedures differ
in detail and are therefore considered separately in this section.

Compressible Flow

The numerical procedure for channel design with compre551ble flow
(v = 1.4, for example) is as follows: :

(1) The velocity is specified as a function of arc length along
that portion of the channel walls over which the velocity varies

tel
Il

a(s)

or q4 is specified and

i

Q

where s 1s arbitrarily equal to zero at that point along one channel
wall where the velocity first begins to vary.

Q(s) \ (25)
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(2) The channel wall boundaries of the flow field in the transformed

®¥-plane are straight and parallel lines of constant ¢ extending
indefinitely far upstream and downstream between @ equals *& where
® 1is arbitrarily equal to zero at that point on the channel wall at
which s 1is equal to zero. The value of V¢ along the right channel
wall when faced in the direction of flow (direction of positive ®) is
arbitrarily set equal to zero in which case the value of  along the
left channel wall (Ay) is obtained by integrating equation (3) across

the channel at a position far downstream where flow conditions are
uniform

AV = pg (26)

- (3) The distribution of loge @ as a function of ® along the
-bounddries in the oy-plane is obtained by integrating equation (4)
between limits so that

s

P = Q ds = o (s) (27)
0

which together with equation (25) gives the distribution of log, Q
along the boundaries in the eoy-plane

log, @ = £(%®) (28))

The integration indicated by equation (27) is carried out numerically
for arbitrary distributions of Q as a function of s.

(4) If the velocities prescribed along one channel wall differ
from those along the other wall, the channel will, in general, turn
the flow. This turning angle cannot be determined exactly for com-
pressible flow until the channel design is completed. However, it will
be shown that this turning angle is only slightly greater than that
resulting for linearized compressible flow with the same prescribed
velocity and with a suitable selection for qg and qp 1in equa-

tions (14a) and (14b). This latter turning angle for linearized com-
pressible flow is given by equation (24), which can be integrated numer-
ically for the arbitrary distribution of loge u = f(®) corresponding

to equation (28).

(5) In order to solve equation (7) for the distribution of logs Q

in the oVy-plane it is convenient to eliminate the density terms from
equation (7) by means of equation (8b). Thus, equation (7) becomes

-2306
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38 log, q 3% log, q' 0 logg q 2 o log q 2
B + 4C + 4D

A +B —m— =0
Bq? BWZ , 0P Sw
(29)
where
1 2
A= T+1
-1
-1
<1_Y2 q2>
B=1.0
T+l
4Q = v 27
1l 2 -t
(-52e)
and
2
4D = d

= _ -1 2

Although equation (29) is nonlinear, it can be solved by relaxation
methods (references 4 and 8, for example). A grid of equally spaced
points, at each of which the value of log, Q@ 1is to be determined, is

plaéed in the flow field between the channel wall boundaries. The grid
is extended upstream and downstream sufficiently far so that constant
values of log, Q are obtained across the channel by the relaxation

methods. In the numerical examples to be presented six or eight grid
spaces were used across the channel. In example III the number of grid
spaces was reduced from eight to four with negligible effect upon the
resulting channel design. The values of log, Q@ at each grid point

were relaxed to five significant figures. If the same velocity distri-
bution is prescribed along both walls, the channel is symmetrical so that
the velocity distribution in only one half of the channel need be deter-
mined by relaxation methods. '
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(6) After log, Q has been determined at each grid point in the

@y-plane the distribution of 6 is determined by equations (10a) and
(10b), which are integrated numerically. The constants of integration
in equations (10a) and (10b) are determined to give a specified value
of 6 at one point in the channel (far upstream, for example). The
integrands in equations (10a) and (10b) are determined by numerical
methods (tables I to VII, reference 4, for example) from the known
values of p and loge @ at each of the grid points. If it is desired
to know the flow direction along the channel walls only, equation (10a)

can be solved along the channel wall boundaries ¥ = O and ¥ = Ay
only. If it is desired to know 6 everywhere in the channel, the
recomuended procedure is to determine the variation in 6 along the
mean streamline (¢ = (Ay)/2) by equation (10a) and to determine the
variation in 6 along each velocity-potential line from the previously
determined values on the mean streamline by equation (10b).

(7) After the distribution of log, @ and 6 are known in the
@y-plane, the shapes of the streamlines and the velocity-potential lines
in the physical xy-pleane or, which is the same thing, the distributions
of x and y in the transformed oy-plane are determined by the
numerical integration of equations (1la) to (11d). The constants of
integration in these equations are determined so that specified values
of x and y occur at one point in the flow field. The recommended
procedure is to determine the variation in x and y along the mean
streamline by equations (1la) and (1llc) and to determine the variation
in x and y along each velocity-potential line for the previously
determined values on the mean streamline By equations (11b) and (11d).
If it is desired to know the x and y coordinates from the channel
walls only, equations (1la) and (1llc) can be solved along the channel
wall boundaries ¢ = 0 and ¢ = Ay only.

Incompressible Flow
The numerical procedure for channel design with incompressible flow
(p = 1) is similar to that just outlined for compressible flow, but

with the following differences:

(1) The velocity is specified as a function of arc length by

equation (25) alone. The constant Q3 1s not considered, because it o

does not exist.

(2) The value of ¥ along the left channel wall (Ay) is equal to
1.0 instead of the value given by equation (26). '

(3) The distribution of loge @ as a function of @ along the
channel wall boundaries in the oy-plane is the same as that obtained
from equations (25) and (27) and given by equation (28).

2306.
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(4) The turning angle A€ of the channel is given by equation (12).

(5) The distribution of log, @ in the ®y-plane is obtained from
the solution of equation (9) by relaxation methods. '

(6) After log, Q@ has been determined at each grid point between

- the channel wall boundaries in the ovy-plane, the distribution of 6 is’
determined by equations (10a) and (10b) as indicated prev1ously for
compressible flow, but with p equal to unity.

-90¢2

(7) After the distribution of  log, @ and 6 are known in the

pV-plane, the shapes of the streamlines and. velocity-potential lines
in the physical xy-plane are determined by equations (1lla)-to (11d) as
indicated previously for compressible flow, but with p equals to unity.

Linearized Compressible Flow
The numerical procedure for channel design with linearized compres-

sible flow (y = -1.0) is similar to that previously outlined for com-
pressible Tlow, but with the following differences:

3

(l)‘The velocity g 1s specified as a function of arc length aldng
the chennel walls by gq(s) or by gqq and equation (25). . For each pre-

¢

scribed velocity there are an infinite nunber of linearized compressible
flow solutions depending on the selected values of q, and Gy in

equations (14a) and (14b). However, for values of g, and q within

the range of q prescribed along the channel walls (and therefore
everywhere in the channel), the solutions, that is, channel shapes,
probably differ only in small detail. The best solution is that most
nearly like the nonlinear compressible solution with arbitrary value of
Y (1.4, for example). In the numerical examples of this report it is
shown that if 4 and dp are equal to the maximum and minimum values

of q a good solution results, at least if the ratio of thesé prescribed
velocities is not too large (2:1 in the numerical examples). On the
other hand, if continuity is to be satisfied for a gas with the correct
value of y (1.4, for example) upstream and downstream of the region
of the channel in which the prescribed velocities vary, then dg - and
'S must equal 9, and qq. , o
After q and dy have been selectea the velocity distribution
a(s) 1is expressed as g*(s) by equation (13b) where ks, is given by
equation (14b) so that ‘ '

(4

<
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L

* * ,,;
= q' (s 30 L
q (s) (30) ~
The velocity q* is then expressed as u by equation (18) so that
u = u(s) (31) "
In the particular case where the selected value of qg 1is equal to
q, the value of ko 1s given by equation (C4b) in appendix C where
the significance of this particular case is also discussed.
©
Q
(2) The solution is obtained in the transformed o*y*-plane where 0
©* and ¢* are defined by equations (16) and (15), respectively. If .
the value of * along the right channel wall when faced in the
direction of q* is zero, the value of ¢* along the left wall (ay ¥
is obtained by integrating equation (15) across the channel at a
position far downstream where flow conditions are uniform
* _ ok % B
. (3) The distribution of log, u as a function of ©* along the |
channel wall boundaries in the <p*w*—plane is obtained by integrating
equation (16) between limits similar to those discussed previously for v
compressible flow so that &{
v.

Y
o* =fq* ds = ©*(s) (33)
0

which together with equation (31) determines the distribution of loge u
along the channel wall boundaries in the o*y*-plane

logg u = £(®*) (34)
(4) The turning angle A6 of the channel is given by equation (24).

(5) The distribution of log, u in the ©*y*-plane is obtained
from the solution of equation (21) by relaxation methods.

(6) After loge u has been determined at each grid point between
the channel wall boundaries in the o*y*-plane, the distribution of 6
is determined by equations (22a) and (22b) in a manner similar to that
outlined previously for compressible flow.

(7) After the distribution of loge, u and 6 are known in the i
¢*¥*-plane, the shapes of the streamlines and the velocity-potential W
lines in the physical xy-plane are determined by equations (23a) to (23d) o
in a manner similar to that outlined previously for compressible flow. o
The velocities q* in equations (23) are obtained from the known values
of u and the densities p* are given by equation (13). '
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NUMERICAL EXAMPLES

The'channel design method has been applied to five examples listed
below: : Lo R

Eiampleé .TwPe of channel : fype bf flow
I .Reducing éection Incompressible-
II | Converging section Incompreésible
IIT | Elbow ‘ -Incompressible
IV Elbow | Linearized compressible
v Elbow | Compressible (y = 1.4)
Example I_

' i
The first numerical example is the design of a reducing section in
a straight channel such that the upstream velocity is'half the downstream
velocity. The solution is for incompressible flow. .
Prescribed‘veldcity distribution. - The prescribed veldcity as a
function of arc length s along both channel walls is given by

Q=0.5 (s <0)
2 3 :
-1 s , (0 s <3.0)
AR AR (55)
Q= 1.0 . (s < 3.0)

The pfescribed»velocity given by equation (35) is plotted in figure 2.

kEQuatipn;(SS) together with equation (27) results in

©=0.5¢ (s <0)
L, | . S ..
S S S
o 5 .8 _ 5 <<
©=2+75 - To8 (0<s=<3.0) S (36)
©=-0.75+ 5 (s <3.0)

 From equations (35) and (36), loge Q@ is a known function of @, which

function is plotted in figure 3.
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Results. - The results of example I are presented in figures 4 to 7.

In figure 4 lines of constant velocity Q and flow direction 8
are plotted in the transformed oy-plane. The flow direction 6 is
constant and equal to zero along the mean streamline (¥ = 0.5) indi-
cating that the center line of the channel is straight. The maximum
absolute values of 6 occur along the channel walls. The solution is
symuetrical about the mean streamline. The lines of constant @ and
6 are orthogonal (see appendix E). If (SS)Q is the spacing of lines

of constant 6 measured along lines of constant @ and if (SS)Q is

the spacing of lines of constant § measured along lines of constant
6, equation (F5) in appendix F gives

(38)q /0 271/180
zggyg = <g§> Q =(:%463—> Q= §¥7 Q (37)

_ In figure 5 lines of constant x and y are plotted on the trans-
formed @y-plane. Along the mean streamline (W = 0.5) the value of
y 1s constant and equal to zero indicating, as before, that the center
line of the channel is straight. The lines of constant x and y are
orthogonal (appendix E). The solution is symmetrical. The ratio of
the spacing of lines of constant x and y is given by equation (F6) *
of appendix F

90¢2

Lo}
o
z

b
)

so that the system of curves forms a square network.

In figure 6 lines of constant ® and ¢ (velocity potential and
.streamlines, respectively) are plotted in the physical Xy-plane. The
shape of the channel walls is that required to result in the prescribed
velocity distribution given by equation (35) and plotted in figure 2.
The downstream channel width is 1.0 by definition. The upstream channel
width is 2.0 in order that the upstream velocity be half the downstream
velocity. As usual the streamlines and velocity potential lines are
orthogonal (appendix E) and, for equal increments of ® and V¥, form
a square network (equation (F7), appendix F, with p equal to 1.0).

In figure 7 lines of constant @ and 6 are plotted in the
physical xy-plane. The lines of constant Q and 6 are orthogonal
(appendix E). The ratio of the spacing of lines of constant @ and ©
is given by equation (F8) of appendix F

i v

<
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(88)g _ (g,_g_) G = <2n[18o> Q=-".Q

ZBS;G 8q 0.03 2.7

which is the same as that for the same lines of constant @ énd 6 'in
the @y-plane (see equation (37)).

Example II -

The second numerical example is the design of a converging section
that funnels the fluid from an infinite expanse into a straight channel
of unit width. Far upstream the channel walls are straight and converge
at a 90° angle. The solution is for incompressible flow. '

Prescribed velocity. - The prescribed velocity as a function of
arc length s along both channel walls is given by

Q=_ﬂ—(;—_22'y | (s <0)

<-2?—ﬂ-1;’->sz+—l§-(§-l>s3 - (0< s <4) (38)

Q= 1.0 : ; (s 24)
The prescribed velocity given by equation (38) is plotted in fTigure 8.

Equation (38) together with equation (27) results in

-2
Cp:—j—r—-loge(l-%) (Sio) \
2 3 4
1 1s”_1({7 3\s 1 {2 s
eIt T §(§E‘§>3‘+3‘£(E')T (0= s =4)(39)
8
qgfg;t--2+s ‘ (824) J

From equations (38) and (39), loge @ is a known function of ®, which
function is plotted in figure 9. ' :

Results. - The results of example II are presented ih figures 10

- to 12.
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In figure 10 lines of constant velocity @ and flow direction 6
are plotted in the transformed oy-plane. The flow direction 6 1is
constant and equal to zero along the mean streamline (¥ = 0.5) indi-
cating that the center line of the channel is straight. The solution
is symmetrical about the mean streamline. As for example I the lines
of constant @ and 6 are orthogonal. The ratio of the spacing of
lines of constant @ and 6 is given by equation (F5) in appendix F

(88)q (o0 4n/180 4
(55)g (aq) Q= ( 505 ) a=5Q (40)

In figure 11 lines of constant ®@ and V are plotted in the
physical xy-plane. The shape of the channel walls is that required to
result in the prescribed velocity distribution given by equation (38)
and plotted in figure 8. As usual the streamlines and velocity poten-
tial lines are orthogonal (appendix E) and, for incompressible flow
with equal increments of ®@ and V, form a square network (appendix F).

In figure 12 lines of constant Q and 6 are plotted in the
physical xy-plane. The lines of constant Q and 6 are orthogonal
(appendix E), and the ratio of the spacing of lines of constant Q and
@ 1is the same as that given for the same lines of constant Q and e
in the (pv plane (equation (40)).

Example III

The third numerical example is the design of an elbow for which
the upstream velocity is half the downstream velocity. The prescribed
velocities are such that no deceleration occurs anywhere along the
channel walls. The solution is for incompressible flow.

Prescribed velocity distribution. - Along both walls upstream of
the elbow the velocity @ is equal to 0.5, and along both walls
downstream of the elbow Q is equal to 1.0. The transition from @Q
equals 0.5 to 1.0 along both walls of the elbow will be the prescribed
velocity distribution as a function of arc length given by equation (35)
for example I and plotted in figure 2. 1In terms of log, Q@ as a
function of ¢ this prescribed velocity distribution is given by equa-
tion (36) and is plotted in figure 3. Although this velocity distri-
bution is the same for both walls, the distribution on the outer wall
(wall with larger radii of curvature) is shifted in the positive ®
direction an amount equal to 2.25 relative to the distribution on the
inner wall. Thus, a velocity difference exists on the two walls at
equal values of o, as shown in figure 13. The greater this difference
in velocity and the greater the range in @ over which velocity differ-
ences exist, the greater is the elbow turning angle. For the prescribed

v

sz
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velocity distribution given in figure 13 the elbow thrning angle given
by equation (12) was 89.37 degrees compared with a value of 89.36 degrees
obtained from the relaxation solution.

Results. - The results of example III are presented in figures 14
to 16 and in tables I and II. (The numerical results for examples 111,
IV, and V are tabulated in tables I to VI to enable a detailed comparison
of the three elbow designs with the same prescribed velocity @ distri-
bution as a function of arc length but with incompressible (example I11),
linearized compressible (example IV), and compressible (example V) flow.)

In figure 14 lines of constant Q and 6 are plotted in the
oy-plane. The flow direction 6 varies along the mean streamline
(V = 0.5) indicating that the channel is curved. The solution is
unsymmetrical. As for examples I and II, the lines of constant Q and’
6 are orthogonal (appendix E). The ratio of the spacing of lines of
constant Q and 6 is glven by equation (F5) An appendlx F

(88)q /56 41/180 o
58)g ~ <5Q> Q= ( 5-05 ) Q=374 (41)

' ~In figure 15 lines of constant ®@ and ¢ are plotted in the
Physical xy-plane. The shape of the channel walls is that required to
result in the prescribed velocity distribution given by equations (35)
and (36) and plotted in figures 2 and 13. The upstream channel width
is twice the downstream width in order that the upstream velocity be
half the downstream velocity. - It is interesting to note that, before

- curving in the direction of the elbow turning angle, the inner wall
‘first curves in the opposite direction. This behavior of the inner wall

geometry is necessary in order to maintain the prescribed constant
velocity along the outer wall where the velocity would otherwise

 decelerate because of the necessary curvature in the direction of elbow

turning. This feature of the elbow geometry will also be noted in
examples IV and V. As usual the streamlines and veloc1ty potential lines
are orthogonal (appendix E), and, for equal increments of ® and Y,

form a square network (equation (F? appendix F, with p equal to 1.0).

In figure 16 lines of constant @ and 6 are plotted in the
physical xy-plane. The lines of constant Q and 6 are orthogonal
(appendix E), and the ratio of the spacing of lines of constant @ and
6 1is the same as that given for the same lines of constant Q and 6
in the @y-plane (equation (41)).
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Example IV

The fourth numerical example is the design of an elbow with the
same prescribed velocity Q, as a function of arc length, used in
example III but for linearized compressible flow (y = -1.0).

Prescribed velocity distribution. - The prescribed velocity distri-
bution Q is the same as that for example III and with qg equal
“to 0.80176. The variation in @ with s along one channel wall is
plotted in figure 2. The values of g and g, in equations (14a) and

(14v) are equal to q, and Qg, Or 0.40088 and 0.80176, respectively.
For these values of gz and q and for the prescribed velocity

distribution with linearized compressible flow, the elbow turning angle
given by equation (24) was 104.08° compared with a value of 104.079
obtained from the relaxation solution and a value of 89.36° obtained
for incompressible flow (example III).

Results. - The results of example IV are presented in figures 17
to 19 and in tables III and IV.

In figure 17 lines of constant q and 6 are plotted in the
transformed o*y*-plane. The solution is unsymmetrical. The lines of
constant g and 6 are orthogonal (appendix E), and the ratio of the
spacing of lines of constant g and 6 1is given by equation (F9) in
appendix F.

i_(zmlao)_i nq
* *

(BS)q _ (50
ZSS;G 8q /p 0.02
where p* is related to g by equations (13) and (13b).

In figure 18 lines of constant o*/Ay* and y*/Ay* are plotted in
the physical xy-plane (where the constant AY* is given by equation (32)
and is equal to 0.73782 for qg equal to 0.80176). The shape of the

channel walls ‘is that required to result in the prescribed velocity
distribution used in example IIT but with linearized compressible -flow
and for gy equal to 0.80176. From continuity considerations the
upstream channel width is 1.5385 times the downstream width. As in
example ITT the inner wall of the elbow first turns in the opposite
direction to the elbow turning angle. As usual the streamlines and
velocity-potential lines are orthogonal (appendix E). The ratio of the
spacing of the lines of constant o*/AY* and y*Ay* is given by equa-
tion (F10) in appendix F

anco

‘)1
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(SS)CD* N Sw* _}— B 1 6 -}__ _J__—
(BS)W* T \Bm*) p* ~ 1/6 p* T p*

Thus the ratio of the spacing of lines of constant o%Ay* and */Ay*
in figure 18 is & measure of the density p*. o

In figure 19 lines of constant q and 6 are plotted in the
physical xy-plane. The lines of constant g and € are not in general
orthogonal (appendix E).

Example V

The fifth numerical example is the design of an elbow with the same
prescribed velocity @, as a function of arc length, used in examples III
and IV but for compressible flow (y = 1.4).

Prescribed velocity distribution. - The prescribed velocity distri-
bution Q is the same as that for examples IITI @nd IV but with g4
equal to 0.79927. The variation in Q with s =along one channel wall
is plotted in figure 2.

Results. - The results of example V are presented in figures 20 and
21 and in tables V and VI.

In figure 20 lines of constant @/Ay and Y/Ay are plotted in
the physical xy-plane (where the constant Ay is given by equation (26)
and is egual to 0.71054 for g3 equal to 0.79927). The shape of the
channel walls is that required to result in the prescribed velocity
distribution used in examples III and IV but with compressible flow
(y = 1.4)" and for qg equal to 0.79927. The upstream channel width
is 1.5412 times the downstream width, and the turning angle is 105.31°
compared with 104.07° for linearized compressible flow (example IV) and
89.36° for incompressible flow (example III). The streamlines and -

- velocity-potential lines are orthogonal, and from equation (F7) of

appendix F the ratio of the spacing of the lines of constant qybw and
w/aw is given by »

(88)y _ 9&)5&5@&&
KSSSW TA\BY p 1/6p  p
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Thus, as for linearized compressible flow (example IV), the ratio of the
spacing of lines of constant ®/Ay and /Ay in figure 20 for equal
increments of m/AW and. wﬁﬁw is a measure of the density p.

The shape of the elbow for compressible flow (example V, fig. 20)
is nearly the same as the shape of the elbow for linearized compressible
flow (example IV, fig. 18). Therefore, in figure 21 the contours of the
walls for both examples are compared. The difference in contours is
very small and it is concluded that, if a nonviscous gas with arbitrary
vy (1.4, for example) were to flow through a channel designed for linear-
ized compressible flow (Y = -1.0), the resulting velocity distribution
along the channel walls would be nearly the velocity distribution pre-
scribed for the linearized compressible flow, at least if the linearized
flow were selected (by the choice of qy and qb) so that the densities
were equal for both types of flow at the maximum and minimum velocities
‘and if the ratio of these prescribed velocities is not too large (2:1 in
the numerical examples). This conclusion is important because the design
method for linearized compressible flow is considerably faster than the
design method for compressible flow with vt other than -1.0.

SUMMARY OF RESULTS AND CONCLUSIONS

A general method of design is developed for two-dimensional
unbranched channels with prescribed velocities as a function of arc
length along the channel walls. The method is developed for both com-
pressible and incompressible, irrotational, nonviscous flow and applies
to the design of elbows, diffusers, nozzles, and so forth. Two types
of compressible flow are considered: the general type with arbitrary
value for the ratio of specific heats (1.4, for example) and the
linearized type in which y is equal to -1.0. In this report (part I)
solutions are obtained by relaxation methods on a transformed plane the
coordinates of which are the streamlines and velocity-potential lines
in the physical plane; in part II solutions are obtained by a Green's
function. The present method of solution gives complete information
concerning the flow throughout the channel.

Five numerical examples are given ana the results presented in
plots of lines of constant velog¢ity and flow direction or lines of
constant physical coordinates in the transformed plane and streamlines
and velocity-potential lines or lines of constant velocity and flow
direction in the physical plane. Among the five examples are three
elbow designs for the same prescribed velocity as a function of arc
length along the channel walls but with incompressible, linearized
compressible, and compressible flow. The numerical results of these
three elbow designs are tagbulated to enable a detailed comparison of
the three designs.

Do
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The shapes of the elbows for compressible flow and for linearized
compressible flow are very nearly the same and it is concluded that, if
a nonviscous gas with arbitrary vy (1.4, for exazmple) were to flow
through a channel designed for linearized compressible flow (y = -1.0),
the resulting velocity distribution along the channel walls would be
nearly the velocity distribution prescribed for the linearized com-
pressible flow, at least if the linearized flow were selected so that
the densities are equal for both types of flow at the maximum and
minimum velocities and if the ratio of these velocities is not too- large
(2:1 in the numerical examples). This conclusion is important because
the design method for linearized compressible flow is con51derably
faster than that for compressible flow. :

Lewis Flight Propulsion Laboratory :
National Advisory Committee for Aeronautics
Cleveland,' Ohio, July 25, 1951
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APPENDIX A

Symbols

The following symbols are used in this report:

A,B,C,D

X,y

coefficients, equation (29)
arbitrary constants, equation (Cla)

coefficient, equation (14a)
coefficient, equation (14b)

distance in xy-plane measured normal to direction of flow
(expressed as ratio of characteristic length equal to
channel width downstream at infinity)

static pressure (expressed as ratio of stagnation density
multiplied by stagnation speed of sound sgquared)

velocity (expressed as ratio of characteristic velocity
equal to constant channel velocity downstream at infinity)

velocity (expressed as ratio of stagnation speed of sound)

velocity used in linearized compressible flow and related
to g by equation (13b)

spacing between lines in xy- or ®@y-plane

distance in xy-plane measured along direction of flow (ex-
pressed as ratio of characteristic length equal to channel
width downstream at infinity)

velocity parameter related to g* by equation (18)

Cartesian coordinates in physical plane (expressed as ratios
of characteristic length equal to channel width downstream
at infinity) '

ratio of specific heats

increment of

flow direction in physical xy-plane (measured in counter-
clockwise direction from positive x-axis).

90¢2
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i

v iV} channel turning angle, equation (12)

p density (expressed as ratio of stagnation density)

o* density used in linearized compressible flow and related to
p by equation (13a)

© e,V velocity potential and stream function, respectively, used
8 ' as Cartesian coordinates in transformed plane, defined by
™ equations (3) and (4)

ANS boundary value of  along left channel wall when faced in -
the direction of flow, equation (26)

w*,w* velocity potential and stream function, respectively, for
linearized compressible flow and used as Cartesian
coordinates in the transformed *y*-plane, defined by
equations (15) and (16)

| A d boundary value of W*, for linearized compressible flow,
along left channel wall when faced in the direction of
flow, equation (32)

Subscripts:

L é,b quantitiés related to two velocities (qa and Qy,, respec-
tively) for which density given by equation (8a) is equal
to density p given by equations (13), (13a), and (13b)

a conditions downstream at infinity

Q,q along lines of constant Q and g, respectively

u conditions upstream at infinity

%y along lines of constant x and Yy, respectively ’

Ay * left channel wall, when faced inndirectidn of flow, along
which W* is equal to Aw*

6 ‘along lines of constant 6

@,w,w*,w* along lines of constant o, v, m*, and _W*, respectively

2z .

‘ ¢ - right channel wall, when faced in direction of flow, along

o ' which ¢ or ¥* is equal to O

1.0 left channel wall, when foced in direction of flow, along

which ¥ 1s equal to 1.0
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..
APPENDIX B "
.
EQUATTONS OF CONTINUITY AND IRROTATIONAL FLUID MOTION IN TERMS
OF TRANSFORMED @,y COORDINATES | -

Consider the two-dimensional irrotational motion of a fluid particle
in the physical xy-plane. The fluid particle is defined by adJjacent
streamlines (constunt V) and velocity-potential lines (constant ®)
spaced ©&n and ©®s apart as indicated in figure 22. The velocity @Q
is parallel to the streamlines und normal to the velocity-potential lines.

Continuity. - From continuity considerations of the fluid particle o
in figure 22 N

Ba—s (bQ 80) = 0 o

or

O loge p O loge @ 1 d(5n) s
S5 T T3 tamos - (B1)

But, from geometrical considerations (reference 6, p. 167, for example)

1 9(% 08
&g - (B2a)
and JLJ
1 d(ss) _ 26 N
5 Sl S (B2D)

so that equation (Bl) becomes

0 log, p X 0 log, Q . 30 .
Os os on

or

0 loge p gp O 108 Q go 20 ay
TS &t T o9 dstoyan= O

which, combined with equations {3) and (4), becomes
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1 (6 log, p N 0 log. Q 0 o ,
P \T 39 3¢ T | - (8)

Equation (5) is 'the continuity equation expressed in terms of
®,y coordinates. ‘ ‘

Irrotational fluid motion. - For irrotational motioh of the fluid
particle in figure 22 :

%(QSS)éO\
or
0 log_ Q
e 1 o(ss) _
on % on (B3)
But, from equations (B2b) and (B3)
0 loge @ g
3 "% 0°
or .
TSV @ 3%ds T
which, combined with equations (3) and (4), becomes
o log. Q 30

Equation (6) is the equation for irrotational fluid motion expressed in
terms of the o,y coordinates. Equations (5) and (8) were originally
derived in modified forms by Chaplygin (reference 7) and are given in
reference 6, page 169.
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APPENDIX C

RELATION BETWEEN VELOCITY AND DENSITY ASSUMING LINEAR VARIATION
IN PRESSURE WITH SPECIFIC VOLUME
The approximate, linear relation between pressure p and specific

volume 1/p first suggested by Chaplygin (reference 7) is given by

(C1a)

from which

(c1b)

where A and B are arbitrary constants.

If p denotes the static pressure expressed as a ratio of the
stagnation density multiplied by the stagnation speed of sound squared,
Bernoulli's equation is

%E +qdg =0

which combined with equation (Clb) integrates to give the approximate
relation between velocity and density

2

B %T = constant (ca)

sz
For convenience equation (C2) can be written as
1
__z__q = 1
p*
or

o= (14 08" (13)

where

p* = kyp ' (13a)

90¢2
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and
q* = kogq . | | . (le)

The constants ki and ko replacé the two arbitrary constanté
in equation (Cz) and, their values are determined so that for any two
arbitrary values of ¢ (designated by g and qb) the values of p
given by equation (13) equal the values of p given by equation (8a).
Thus the values of p given by equation (13) for g equal to qy or
q, are correct; for all other values of g the values of p are
approximate. The constapts k, and kp are determined from the con-
ditions

N A

Pg = k3P4

Q@ = kya, - , ,

> (c3)

*
Py = Koy

*

% = F2% J

From equation (13) and the conditions given by equation (C3)

2

1. Py 4y

1= 5| <qa53 A (142)
1-(—=)

%,
and
p z
) »
1 .

q
o 1 - Pg 9y
P %
where p_- and p, are determined by equation (8a) for the selected
values of 'q, and. %y respectively.
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The values of qg and q might, for example, be selected to equal

the maximum and minimum values of q (which values of q must occur on
the channel walls and are therefore known). Also, the values of gq, and

qy might be selected to equal the upstream and downstream velocities
q, and qg- In this case the upstream and downstream channel widths

would then satisfy continuity for a gas with the correct value of
(1.4; for example). If the upstream and downstream velocities are equal,
their value and the value of some other velocity (the maximum or minimum
velocity, for example) can be selected for gy and gy or, if desired,
dqg can be equal to g, in which case if

dg = 4 + € where ¢ —0

9 = a

it can be shown from equations (14a) and (14b) that

(C4a)

and

(Cc4b)

This latter case, in which gqg = q, = q, corresponds to the method
used by Chaplygin (reference 7) and Kdarmdn-Tsien (reference 9) in which

the correct relation between p and % is replaced by a straight line

(equation (Cla)) that is tangent to the correct relation at one point
(where q, = qp).

B

N
S
(o))
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APPENDIX D
.
EQUATIONS OF CONTINUITY AND IRROTATIONAL FLUID MOTION IN
TERMS OF TRANSFORMED o*,¥* COORDINATES
© - Consider the two-dimensional irrotational motion of a fluid particle
8 in the physical xy-plane. The fluid particle is defined by adjacent
a streamlines (constant ¢*) and velocity-potential lines (constant *)

spaced ®n and ©s apart as indicated in figure 22. The velocity g¢*
is parallel to the streamlines and normal to the velocity-potential lines.

Continuity. - From continuity considerations of the fluid particle
in figure 22

335 (p*q*dn) = 0

or

0 loge p* O loge @* 1 ¥(sn) .
os + ds * 85 s =0

which combined with equation (B2a) becomes

" % . * )
O log, p* gpr O 108, 9 gox 3o ay*

So* _ds T o™ is TNFa@m T 0

or, from equations (15) and (16)

‘ ‘ 1 (O logg p* O logg q* 3% o
» R\ oot )t O (1)

But, from equation.(13) ‘ -
1 O log, p* - d*Z ) log, q*

DA e

so that equation (D1) becomes

* .

~

1 alOgeq 08 =O

, +
\/l + q"‘2 BCp* , 811(*

'<D2)
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Finally, if

K (18)

U=
, 1+/1+ q*2

then

d log, q*

ﬁz = 0 logg u (D3)
+ q

so that equation (D2) becomes
0 loge U 3g
So*F  t 3¢

Equation (17) is the continuity equation expressed in terms of ¢, y*
coordinates and loge u.

=0 ‘ (17)

Irrotational fluid motion. - For irrotational motion of the fluid
particle in figure 22

% (q*8s) = 0

or

*
9 1og, a 1 Bgﬁs) -0
on + Os n

which combined with equation (B2b) becomes

o logg q* ay* 39 dcp"‘_

SNF @ Spras - ©
or, from equations (13), (15), and (16)
1 Ologeat po (08)
5 oy * o>~
*
l+g
Finally, from equations (D3) and (D4)
0 log_ wu

v T Jp*
Equation (20) is the equation for irrotational fluid motion expressed in
terms of *,y* coordinates and log, u.
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APPENDIX E

CRTHOGONAL CURVES IN - AND xy-PLANES

If, for example, lines of constant @ and 6 are orthogonal in
the oy-plane the product of their tangents equals -1.0. This condition
is satisfied if '

0Q 06 |, 0Q 06 _
So 5%t SV Sy S 0 (E1)

But, from equations (5) and (6)

990 , 30 _[f1_ e 20 Blogeoae]- (52)
o3t oy 99 T 09  Jo

so that for compressible flow equation (El) is not, in general, satisfied
and therefore lines of constant Q (or q) and 6 are not orthogonal
in the o@vy-plane. For incompressible flow p 1is equal to 1.0 and the
right side of equation (E2) is zero so that equation (El) is satisfied
and therefore lines of constant - @ and 6 are orthogonal in the
py-plane. ‘ '

From equations (1la) to (11d) in differential form

oy sin 8 ox
3-8 TP
so that
ox By ox Oy _ ' 2 ox Oy v , l
5&35&3 5—3——(1 )3—? (E3)

For compressible flow the right side of equation (E3) is not, in general,
zero so that lines of constant x and y are not orthogonal in the
epV¥-plane. For incompressible flow the right side of equation (E3)
becomes zero so that lines of constant x and y are orthogonal in the

oY= plane
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From the usual definitions of @ and

o 1 oy
&—QCOSG—SFY 4
oP -1 oy
_Qs1n9_—p—& -
. Bi
so that Q
o
oP oy L I _
Ox O0x © Jy Oy
Thus, for both compressible and incompressible flow lines of constant
® and ¥ are orthogonal in the xy-plane.
In terms of Q@ and 6 the equations for continuity and irrota-
tional motion in the xy-plane reduce to
0 log_ Q alog p alog p
e 06 2
- Ta— + Sy = - sin O cos 8 ——_?T_——'_ cos @ ———5————
L4
0 log, @ g o log, p _ 0 log, p :
Sy " rrialie sin 6 cos 6 ———?;———- - sin® 6 —__?T——_' .
 so that
aqae+aqae=
S ox 3y o
0 logg p 5 0 logg p ;M
- Q 5— sin @ cos 6 5y + cos“® 6 % , : -
Q 0 9———F—-a 1% P 2 6__5__8 e ) (E4) )
- sin 6 cos + sin ;
8‘ .7{

For compressible flow the right side of equation (E4) is not, in general,
zero so that lines of constant Q (or g) and 6 are not orthogonal S
in the xy-plane. For incompressible flow the right side of equation (E4) .
becomes zero so that lines of constant Q and 6 are orthogonal in the

¢y-plane.




90¢2

NACA TN 2593 ‘ , _ ~ 39

Likewise for linearized cowpressible flow it can be shown that

3¢ 530* * 5 op* = © - (ES)
2 dy | dx D . 3% D /
e - 000 B g =
dop* oy* | do* dy* o
S 3 F oy oy 9 o (E7)
and
dq 06 + dgq 96 _
d0x 0x Oy Oy

O log, p* 5 O logg p*>

> log. p* d log, p*
e e ) (59)

36 /. . |
-.qg-y<51n9coseT+51n 6——ay—-——

Thus, from equation (ES) lines of constant g .and 6 are orthogonal
in the ¢*y*-plane and from equation (E7) lines of constant o* and
\;/* are orthogonal in the xy-plane. But from equation (E6) lines of
constant x and y are not orthogonal in the @*y*-plane and from
equation (E8) lines of constant q and 6 are not orthogonal in the
_ xy-plane. -
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APPENDIX F

RATIO OF CURVE SPACING FOR SETS OF ORTHOGONAL CURVES
IN oy- AND xy-PLANES

Congider for example the case of orthogonal lines of constant @Q
and 6 in the oy-plane (incompressible flow, appendix E). If (dS)g

2306

is the differential distance along a line of constant 6 Dbetween two
curves of constant @
2 2 2
(@8)g = (a9)y + (AW)g (F1)
where the subscripts 6 indicate that the changes are made along a line
of constant 6. The change in @ along (dS)g 1is
- o8 R -
aQ = 53 (a9)g + & () g (F2)
Also, because d6 1is zero along (dS)e
Y 36
0= w (d.CP)e + g\l"‘ (d‘l’)e (FS) -
From equations (Fl) to (F3)
() (5)
2 2 ®
(d-s)e = (aQ) ) (Faa)
3 36 dy d8
OP Sy ~ oy d
L .J
Likewise, if (dS)Q is the differential distance along a line of
constant @ between two curves of constant 6
-
() - (%)
2 2 P y
(@s).“ = (ae) F4b) ‘
2 3 3 _ 39 30Y ( .
) 3P 3 ~ 3y 3P/ |
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Thus, from equations (F4a) and (F4b) the ratio of curve spacing for
orthogonal lines of constant Q and O 1in the oy-plane becomes

= | (B (%) "
(88), ~ BQ (%%)2 +,<g%>z.

which, frém equations (5) and (6) with p equal to 1.0, becomes

(88)q (30 |
ﬁr@ =(—5§,> Q (F5)

Likewise it can be shown that for incompressible flow in the
py-plane with lines of constant x and ¥y

(59),
Conll~ 9

For both compressible and incompréssible flow in the xy-plane with lines
of constant ® and V¥

@ @

¥

For incompressible flow in the xy-plane with lines of constant Q and 6

%%=<%>Q E - (F8)

For linearized compressible flow in the ¢*y*-plane with lines of
constant q and ©

(88) .
T

And for linearized compressible flow in the xy-plane with lines of
constant w* and W*

(SS)m* av*\ 1 x
Zas)w* = <€C’P‘) o* | (F10)
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TABLE I - DISTRIBUTTON OF VELOCITY Q AND FLOW DIRECTION € IN TRANSFORMED ¢y -PLANE FOR EXAMPLE ITI (ELBOW WITH INCOMPRESSIBLE FLOW)

[Prescribed varistion in Q with arc length s along channel walls plotted in fig. 2;. Q‘u'= 0.5, @

a4

= 1.0, A8 = 89,36°.]

\

0

0,125

0.250

0.375

0.500

0.625

0.750

0.875

1,000

Q.

Q

Q

&

Q

Q

Q

2]

Q

2]

Q

8

Q

-2.000
-1.875
-1.750
-1.625
-1.500
-1.375
-1.250
-1.125
-1.000
-.875
-.750
.-.625
-.500
-.375
-.250
-.125
0
.125
.250
.375
.500
.625
.750
.B75
1.000
1.125
1,250
1.375
1.500
1.625
1.750
1.875
2,000
2,125
2,250
2.375
2,500
2.625
2,750
2,875
3.000
3.125
3.250
3.375
3.500
3.625
3.750
3.875
£.000
4.125
4.250
4.375
4.500
4.825
4,750
4.875
5.000
5.125
5.250
5.375
5.500
5.625
/5750
5.875
6.000

0.5000
5000
5000
5000
.5000
5000
5000
5000
.5000
.5000
.5000
5000
.5000
.5000
.5000
5000
5000
5097
5354
5715
L6134
6576
.7018
L7448
,7855
.8235
.8583
.8898
L9177
.9418
.9620
.9782
.9901
.9975

10000

1.0000

1.0000

1,0000

1,0000

1.0000

1.0000

1.0000

1,0000

1,0000

1,0000

1.0000

1.0000

1.0000

1.0000

1,0000

1.,0000

1.0000

1.0000

1.,0000

1,0000

1.,0000

1.0000

1.0000

1.,0000

1,0000

1.0000

1,0000

1,0000

1,0000

1,0000

.01
01
01
.02
03
204
08|
.09
W14
+20]
+30]
.45
.69
1,04
1.63
2,73
5.06
6.83
7.36
6.69
4.95
2,40
-.81
~4.52
-8.64
~13.08
-17,.77
-22.67
-27.72
-32.88
-38,10
~43,30
-48.,43
-53.34
~57.83
-62.00
-65,84
-69.39
-72.57
=75.43]
-77.93
-80.11
-81,97
-B3,54
-84,84
-85.90
-86.75
-87.43
-87.95
-88.34
-88.64
-88,85
-89,01]
-89.11
~89.19
-89.24
-89,28
-89,31
-89.32
-89.34
-89.34
-89.35
-89.35
-89.36

0.5000
5000
.5000
.5000
5001
5001
»5001
.5002
5003
.5005
5007
L5011
5016
.5025
.5039
5085
5115
.5226
25424
5692
6006
6344
.6690
L7030
.7356
7662
7945
.8202
8432
.8833
.8806
.8949
.9065
L9153
9218
L9271
L9321
L9374
.9429
.9487
.9544
L9601
.9656
.9708
.9755
.9798
.9837
.9870
.9898
.9922
.9942
.9957
L9969
.9978
.9984
.9989
.9983
.9995
.9987
.9998
9999
.9999
.9999

1.0000

1.0000

.01
.01
.01
.02
.03
04
.06
.08
'z
.18
W27
40
.60
.89
1.34

‘- 2.04
3.21
4.02
4,02
3.18
1.52
-.82
-3.76
-7.18
-11.01
-15.16
~19.59
-24.22
-29.03
-33,95
-38.94
-43,91
-48,83
~53.57
-58.01
-62.16
-66.01
-69.55
-12.74
-75.59
-78.10
-80.27
-82,11
-835,67
-84.96
~-86,01
-86.84
-87.50
-88.01
-88.39
-68.68
-88.88
-89.03
-89.13
-89.21
~89.25
-89.29
~89.31
-89,33
-89.34
~89.35
-89.35
-89,35
-89,36

0.5000
5000
+5000
.5001
5001
.5002
.5002
5004
.5006
.5008
.5013
.5019
.5029
5044
.5068
5107
.5171
.527€
5433
5637
.5874
.6132
.6399
.6663
.6919
L7162
7387
L7593
7778
L7944
.8089
.8215
.8325
8422
.8510
.8596
.8687
.8785
.8880
.89938
L9111
.9221
.9327
.9427
.9521
.9605
.9680
+9748]
.9802
.9849
.9887
L9917
L9941
.9958
L9971
.9980
.9986
L9991
.999¢
.9996
.9997
.9998
.9999

1.0000

1.0000

0
.00
01
01
.01
.02
.03
.04
.07
.10
.14
.21
+30
45
.65
.94

1.30

1.64

1.73

1.32
.33

-1.31

-3.52

-6.28

-9.46
-13,05
-16.97
~-21.17
-25.60
=30.20
-34.,94
~39.75
~44.58
~49,36
-54.00
-58,44
~62.,63
-66.51
~70.07
-73.27
~76.12
-78.60
~80.75
-82.56
-84.07
-85.32
-86.32
-87.11
~87.73
-88,20
-88.54
-88.79
-88.97
-89.08
-89.18
-89.24
-89.28
-89.30
-89.32
-89.33
-89,34
-89.35

-89,35/

-89,36
~89.36

0.5000)
.5000
.5000
,500L
5001
.5002
.5003
.5005
5007
L5011
.5016
.5025
5037
5055
5082
5124
.5187
.5278
5402
.5557
5736
.5930
.61352)
L6334
L6530
L6717
.6891
L7052
.7199
L7331
.7450
.7558
.7659
L7757
.7858
.7968
8091
.8228
8578
.8537
.8699
.8860
.9016
.9164
L9501
,9426
.9537
.9B34
9717
.9786
.9842
.9885
L9919
.9943
.9961
9973
.9982
.9988
.9992
,9995
.9997
.9998
.9999
.9999
1.0000

<00
.00
.01
.01
.0L
.02
.03
.04
.05
.08
.11
.16
.24
.32
.44
.50
.34
-.03
-.75
-1.89
-3.55
-5.69
-8.31
~11.34
-14.76
-18.51
-22.53
-26.79
-31.25
-35.84
-40.54
-45.28
250,02
-54.65
-59.14
-63.40
-67.35
-70.96
-74.17
-77.02
-79.46
-81.55

-83.30|

-84.74
-85.91
-86.84
-87.,56
-88.10
-88.50
~-88.78
-88.98
-89.10
-89.19
-89.25
-89.29
-89.31
-89.33
-89.34
-89.35
-89.,35
-89.35
-89.36
-89.36
-89.36

0.5000
.5000
.5000
5001
.5001
.5002
.5003
5005
.5008
.5012
L5017
.5026
.5038
5056
.5083
.5121
5175
.5249
5344
.5460
.5592
5735
.5883
.6032
.6177
.6316
.6446
.6567
.6678
L6779
.6873
.6962
L7050
7143
L7249
L7374
.7524
7697
.7891
L8097
.8309
.8521
.8726
.8920
.9100
9264
.9410
.9538
.96486
L9736
.9808
.9864
.9905
.9935
.9956
.9970
.9980
.9986
,9991
.9994
.9996
.9998
.9999
,9999
1.0000

.00
.00
.00
.00
+.00
.00
.00
.00
.00
-.0L
-.0L
-.02
~.04
-.09
-.17
-.36
-.70
-1.27
-2.18
-3.46
-5.19
-7.33
-9.89
-12.84
-16.14
-18.76
-23.66
-27.81
-32.18
-36.67
-41.32
-46.04
-50.80
~55.51
-60.11
-64.48
-68.52
-72,20
-75.44
-78.27
-80.67
-82.69
-84,35
~85,69
-86.75
-87.57
-88.18
-88.62
-88.92
-89.11
-89.23
-89.29
-89.33
~89.34
-89.35
-89,36
-89.36
-89.36
-89.36
-89.36
~-89.36
-89.36
-89,36
-89.36

0.5000
.5000
5000
5001
.5001
5002
L5003
.5005
5007
L5011
5016
5023
50354
5050
5072
.5103
5145
.5200
.5269
L5351
5444
5544
5647
L5751
5852
5949
L6042
6126
16204
.6278
6347
.6415
6486,
L6569
L6671
L6805
6977
,7186
7424
.7680)
71943
.8205
L8460
.8700
8923
9125
.9305
.9462
.9596
.9705
.9792
29857
9904

..9935
9957
,9971
9981
,9987
.9992
.9995
.9996
.9998
.9999
.9999)

1.0000

[o]
.00
.00

-.01

-.01

-.01

-.02

~.03

~.04

-.06

-.09).

-3
-.19
-.28
-.43
-.64
~-.99
-1.50
-2.24
-3.29
-4.66
-6.43
-8.57
-11.09
-13.98
-17.20
-20.74
-24,56
-28.62
~32.90
-37.37
~42,01
~46,78
-51.66
-56.56
~-61,28
-65,82
-70.02
-73.82
-77,11
-79.92
-82,26
~84,17
-85,71
-86,92
~87.83
-88.51]
-88.98
-89,28
-89.45
~89,53
-89.55
~89.53
-89.49
-89.45
-89.43
-89.41
-89,39
-89.38
-89.38
-89,37
-89,37
-89.37
-89,37

-89.36

0.5000
+5000
5000
5001
.5001
.5002
5002
5004
.5005
.5008
.5012
.5018
5026
5037
50583
.5074
.5103
.5139
.5184
.5236
.5295
.5357
.5422
.5487
5550
5611
.5668
5721
ST771
.5817
.5862
.5908
.5959
.6023
.6112
.6248
.6442
.6689
.6975
.7285
.7603
.7918
.8222
.8508
8773
.9014
.9228
L9414
L9571
.9698
.9798
.9869
L9917
.9946
.9965
.9977
.9985
.9990
.9994
.9996
.9997
.9998
.9999
1.0000]

1.0000

0
.00
-.01
-.01
-.01
-.02
-.03
-.05
-.07
-.10
-1
-.21
-.31
-.45
-.67
-.98
-1.44
-2.07
-2.93
-4.07
-5.51
-7.31
-9.45
-11.95
-14.79
-17.98
-21.44
-25.19
-29.20
-33.44
-37.89
-42.53
-47.35
-52.35
-57.49
-62.68
-67.65
-72.14
-76.07
-79.37
-82.10
-84.30
-86.05
-87.41
-88.43
-89.16
-89.65
-89.94
-90.07
-90.07
-89.99
-89.87
-89.73
-89.62
-89.54
-89.48
-89.44
-89.42
-89.40
-89.39
-89.38
-89.37
-89.37
-89.37
-89.37

0,5000
25000
+5000
.5000
+5001
+5001
+5001
.5002
+5003
5004
.5006
.5009
.5014
.5019
.5028
5039
5053
5071
.5093
.5118
5146
5176
.5207
.5237
5267
5296
5323
5348
5371
.5393
5414
5437
25483
.5499
5580
.5686
5905
.6200
.6544
L6915
.7292
7663
.8018
.8351
.8658
.8936
.9183
.9397
L9577
.9722
.9831
.9905
.9948
.9969
.9980
.9987
.9992
.9995
.9997
.9998
.9999
.9999
.9999)
1.0000

1.0000

0
- =01
-.01
-.01
-.02

- ~.03]
-.04
-.06
-.08
-.12
-.18)
-.27
-.39
-.58)
-.83
-1.19
-1.7
~2.41)
-3.34
~4.54
-6.01
-7.83
~9.97
-12.46
-15,27
-18.41
-21.86
-25.58
-29.56
-33.77
-38.21
-42.86
-47,73
-52.86
-58.32
-64.31
-69,98
-74.88
-78.95
-82,21
~84,80
-86,80
-88,32
-89.44
-90.22
-90,72
-90,99
-91,06
-90.98
-90.78
-90,50
-90.19
-89,90
-89.72
-89.60
-89.52
-89.47
-89.43
-89.41
-89.39
-89,38
-89.38
-89.37
-89,37/
-89.37

0.5000
5000
5000
5000
+5000
.5000
.5000
-5000
5000
5000
.5000
5000
.5000
5000
5000
+5000
.5000
.5000
5000
.5000
.5000
.5000
.5000
.5000
.5000
+5000
.5000
.5000

..5000
'.5000
5000
.5000
.5000
5000
.5000
5097
5354
5715
6134
.6576
.7018
. 7448
.7855
.8235
.8583
.8698
L9177
.9418
.9620
.9782
.9901
29975

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

-.08
-.09

-.14
-.20
-.29
-.42
-.61
-.89
-1.26
~1.80
-2.52
-3.46
~4,68
-8,18
-7.99
-10,13
-12,62
-15,43
-18.56
-22.00
-25,71
-29.68
-33,90
-38,34
-43.02
-47.94
-53,19
~59.04
-66.18
-72,81
-78.23
-82.46
-85.65
-88.03
-89,76
-90.99
-91,81
-92,30
-92,52
-92,52
-92,34
-92,01
-91,57
-91.06
-90.52
~90,03
-89.78
~89.64
-89,54
-89.48
-89.44
-89,42
-89.40
-89.39
-89.38
-89.37
-89,37
-89,37
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L
TABLE II - DISTRIBUTION OF PHYSICAL COORDINATES x AND y IN TRANSFORMED @y-FLANE FOR EXAMPLE III (ELBOW WITH INCOMPRESSIBLE FLOW) 5
&
[Prescribed variation in Q with arc length s along channel walla plotted in fig. 2; Qu = 0.5, Qd = 1.0, A@ = 89.36°.] :
v [+ 0.125 0.250 0.375 0.500 0.625 0,750 0.875 1.000 ‘ g
L4 X ¥ x ¥ T y x y x ¥ x ¥ y z y x

0.502{-3,978| 0.752(-3.978
.502{-3,728( .752|-3.727
.502|-3.478| .752|-3.477
.502(-3.228| .752|-3.227
.502|-2.978f .752[-2,977
.502|-2.728| .752|-2.727
.502[-2.478| .752|-2.477
.502|-2,228| .752|-2.227
.501|~1.978] .751]-1,977
.501(-1.728{ .751|-1,727
.501(-1.478| .750]-1.477
.500)-1.229( ,749;-1.227] .999
.499F -,979( .748] -,977| .997
«497| -.730| .746] -,727( .9%5
495( -,481 .743| -.477f .992
.491) -.233] ,739| -.227| .987
.486) 015 .732| .023( ,981
4791 .261| .724| ,273| .M
.468! .507| .71l .522] ,958
454 .751) .895| .772] .941
434 .994F ,672| 1,021 .917
+408| 1,234 .643] 1.269] .886

-2.000{-3,978} -0,998| -3,978| -0,748-3.978 -0,498| -3,978| -0,248( -3.878| 0.002(-3,978 0,252
-1.8751-3,727} -.998(-3,728| -.748(-3,728| -.498(-3,728| -,248|-3,728| .002|-3,728| .252
~1.750)-3.477| -,998|-3,478| -,748]-3.478| -.498|-3,478| -.248|-3.478 .,002|-3.478| ..252
-1.625(-3,227| ~-,998{-3.228| -.748|-3.228| .,498|-3,228) -,248(-3.228] .002{-3,228] ,252
-1,500(-2,977) -.998(-2,977] -,748|-2.978/ -,498|-2,978| -,248|-.2.978] .002|-2.978] ,252
-1.375(-2,727] -,998|-2,728| -.748|-2,728| -.498{-2,728| -.248|-2.728] .002}-2.728/ .252
-1.250(-2,477} -,997|-2.478| -.747|-2.478| -.498|-2.478| -,248|-2.478] .002|-2.478] ,252
-1,125f-2.227| -,997|-2,228 -.747|-2.228| -.497|-2.228| -.248|-2,228| .002|-2.228| .252
-1.000(-1,977| -,997(-1.978| -.747{-1.978| -.497|-1.978 -,247|-1.978| .002|-1,978| ,252
-.875|-1,727( -,996)-1,728| -,747[-1.728] -.497|-1,729| -,247(-1.729| .002|-1.728] .252
~e7501-1.477| -.996[-1,478| -.746|-1.479| -.496|-1,479| -.247|-1,480| ,002{-1.479| .251
-.625(-1,227} -,995|-1,229| -,745(-1.230| -.496{-1,230] -,247(-1.231] .002|-1.230| .251
~500[ -.977| -.,993| -.,978| -.,743| -.981| -.495] -.982] -.246| -.982| .002| -.982] .250
=375 ~.727| -.990| -.730| -.741| -.733| -,493| -.734| -.245| -.735 002 -.734| 249
-.250| -.478( -,987| -,482| -.738( -.485] -,491| -,487| -.244| -.488] .002| -.487| .248
-.125| -.228( -,981| -.235| -,733| -.239| -.487| -.242| -.242| -.243| .001| -.241| .245
0 .022) -.972| .01l -,726| .004| -.482 ,000| -.240{ .000| .o00| .o08| .242

.125 .270) -,955} ".254[ -.715 .243| -,476] ,239| -.239| .240| -.002; ,245| 237

.250f ,510| -,930| .489 ~-.700! .477| -.469| .472] -.238] .476] -.006| .484] .229

L3750 734 -,901 ,713] -.684| .702| -.463| 700 -.239] .707| -.013| 719 .218

.500| ,942| -.875| ,925{ -.670( ,918| -,460{ .921| -.244] - .933] -.024| .950{ ,202

.625| 1,139 -.855| 1,128| -.662( 1,128 -.461 1,136| -.254| 1.153| -.041| 1.177| .180

.750| 1.322|.-,843] 1,321| -.660| 1,327| -.470| 1.343| -.271] 1,367| -.064| 1,398| ,151 3751 1,472| .607) 1.516| .848

.8751 1.495] -,840] 1,502| -.668| 1.518| -.486| 1,542| -.,295| 1.575[ -.095| 1.614] .113 .332| 1.707| .560] 1.761| .798
1.000| 1.658] -.848) 1.675| -.684[ 1.701 4.511| 1.734| -.328| 1.776| -.135( 1.824] ,067{ 1.879] .279| 1.938] .503| 2.003| .738
1.125| 1.812) -,866| 1.840| -.710| 1.875| -.545| 1.918} ~-.370{ 1.969| -.185| 2.028| .010| 2.094| .216| 2.165| .435| 2.242| .665
1.250| 1.958( -.893| 1.995( -,747| 2.041| -.590| 2,094| -.423} 2.156| -.245| 2,225 -,058| 2,302 .142| 2.386] .354| 2.477| .578
1.575| 2.096| -.931| 2.143| -,793| 2,198 -.644| 2.262| -.485| 2.334; -.316| 2.415| -.137| 2.504| .055| 2.6801| .260] 2.705| .477 *
1.500| 2.226| .,979| 2,282| -.849| 2.348| -.709( 2.422| -.558| 2,504| -.398| 2.596| -.228| 2.697| -.044| 2.807| .152]| 2.927 .381
1.625) 2.347)-1,036| 2,413| -.914| 2.488| -.783| 2.572] -.642| 2.665| -.491| 2.768] -.330] 2.882| -,156]| 3.005 .030| 3,139| .229
1.750| 2.461}-1.102| 2,535| -,989| 2.621{ -.867] 2,713| -.735] 2.816| -.594| 2.930| -.444{ 3.,055| -.281| 3.192| -.106] 3.341| ,082
1.875| 2.566|-1.177| 2.649{-1.073| 2.741} -,960| 2.844| -.838! 2.957| -,708| 3,081| -.569| 3,218| -.418| 3.368| -.255! 3.531| -.081
2.000| 2.662(-1,260| 2.753|-1,164| 2.853(-1,061| 2.964| -.950| 3.086| -.831| 3.219| -.705| 3.367| -.567| 3.529| -.418| 3,706 -.259 . -
2,125 2,749/-1.350) 2.847(-1.264| 2,955|-1,170| 3,074{-1.070| 3.202| -.963( 3.344| -.850| 3.501| -.727! 3.675| -.594| 3,865 ~.451
2.250( 2,828(-1.447} 2.932(-1.369| 3,047|-1.286| 3,172|-1.197| 3,307|-1.102| 3,455|-1.002] 3.620] -.895| 3,803| -.780| 4.004| -.658
2,375 | 2,899|-1,550| 3,008{-1.481| 3.128|-1.407| 3,258|-1.329| 3.398|-1,247{ 3,550|-1.160| 3.721|-1.070| 3.910| -.977| 4.118| -.880
2,500 2,961(-1.659| 3,075|-1,598| 3,199(-1,533| 3.332(-1.466| 3.476(-1,395| 3.631|-1.322| 3,803|-1.249| 3.994]-1,177| 4.203|-1.105
2.625| 3,016(-1.771| 3.134/-1.718| 3.260|-1.663| 3.396(-1.605| 3.541|-1.546| 3,697|-1.485] 3.869(-1.428| 4.056|-1.374| 4.259(-1,324
2.750| 3.064[-1,886| 3.184(-1.841| 3.313|-1,794| 3,450{-1.746| 3.595!-1.697| 3,751|-1.648| 3.919{-1.604 4.100(-1.565| 4,294 (-1.532
2.875] 3,105/-2,005( 5,227(-1,966| 3.357;-1.927| 3.494|-1.887| 3,638{-1.847] 3,792|-1.808| 3.956(-1.775| 4.130(-1,748] 4.314|-1.727
3.000| 3.139|-2,125/ 3.263)-2.092| 3.393(-2,060| 3,530|-2.028] 3,673|-1.996] 3.824!-1,965| 3.983|-1.941| 4,150{-1.923| 4.324 |-1.911
3.125| 3.168|-2,246( 3.292}-2,219| 3.423(-2,193| 3.559|-2.167| 3,700|-2.142] 3,848(-2,119| 4.002|-2.101| 4,162(-2.089 | 4.328(-2.084
3.250| 3.191|-2,369( 3.317|-2.347| 3.447/-2,326| 3,582|-2.305] 3,721|-2.285| 3.866|-2.267| 4.015|-2.256] 4.168|-2.249| 4.326[-2.247
3.375| 3.2111-2,493| 3.337|-2,475| 3.466|-2.457| 3.600(-2.411| 3,737|-2.426] 3,879|-2.413| 4.024(-2.405/ 4,171|-2.401| 4.323|-2,402
3.500| 3.227(-2,617| 3,352(-2,602! 3.481[-2.588| 3,614|-2.5764 3,749{-2,564| 3,888(-2,555 4.029(-2,549| 4.172|-2.548| 4.317|-2.551
3.625| 3.239|-2,741| 3.365]-2,729| 3.493(-2,719( 3.624|-2.709| 3.758{-2,700] 3.894|-2,693| 4,032 -2.690| 4.171]-2.690| 4.311{-2.693
3.750| 3.249(-2.865| 3,375/-2.856| 3.503!-2.848| 3,633)-2.840| 3,764|-2.834| 3.898/-2.829] 4.033{-2.827| 4.169(-2.828| 4,305]-2.832
3.875) 5.257(-2,990| 3.383|-2,983| 3.510|-2.976] 3,639/-2.971| 3.769|-2.965| 3.901|-2.962] 4.033|-2,961] 4.166(-2.962| 4.299(-2.966
4.000¢ 3.264(-3,115| 3,389|-3.109| 3.516(-3.104| 3.644|-3,100| 3,773 ~3.096] 3.903(-3.093| 4.033|-3.093| 4.,164|-3.094 | 4.294 |-3.097

szzzsassagsl”

4.125| 3.269|-3,240( 3,394)-3.235( 3.520(-3,231| 3.648|-3.228| 3.776|-3.225] 3,905|-3.223| 4.033|-3.222| 4,162|-3.223 | 4.290].3.226
4.250| 3.273(-3.365| 3,398|-3.361| 3.524|-3.358| 3,651)-3.355| 3.778|-3.352| 3.906| -3.351{ 4.033{-3.350| 4.160{-3.351| 4.287|-3.35%
4.375| 3,276|-5.490| 3,401 -3.487| 3,527(-3.484| 3.653|-3.482| 3,780 -3.480| 3.907|-3.478! 4,033]-3.478| 4.160|-3.478 | 4.286|-3.478
4.500( 3,279{-3.615| 3.404|-3.612| 3.529{-3.610{ 3.655|-3.608| 3,781|-3.606| 3.908(-3.605| 4.034|-3.604] 4,159|-3.603 | 4,285 |-3.603
4.625| 3,261|-3,740| 3,406|-3,738| 3.531{~3,736| 3.657|-3.734] 3.783|-3.732| 3.909(-3.731| 4.034|-3.730| 4.160|-3.729 | 4,285 |-3.729
4.750| 3.283|-3,865| 3.408/-3.863| 3.533|-3.861| 3.659]-3.859| 3,784|-3.858 3,910|-3.856| 4.035(-3.855| 4.161{-3.854 | 4.286]-3.853
4.875| 3.285(-3,990| 3.410-3.988| 3.535(-3.986| 3.660)-3.985( 3,786(-3,983| 3,911/-3,982| 4,036|-3.981| 4.162|-3.979 | 4,287|-3.978
5.000 3.287(-4,115| 3.412|-4.113| 3.537(-4.111| 3.662|-4,110| 3.787(-4.108| 3,912|-4,107| 4.038(-4.106| 4.163|-4.105 | 4,288 |-4,103
5.125| 3.288/-4,240| 3.413|-4,238| 3.538(-4,237| 3.663|-4,235| 3,788|-1.234| 3.914(-4.232] 4.039|-4.231| 4.164 [-4.230 | 4,2689}-4,229
5.250| 3.290}-4,365] 3.415|-4.363| 3,540(-4,362| 3.665|-4.360| 3.790|-4.359| 3.915(-4,356| 4.040|-4.356| 4.165|-4.355 | 4,290]-4.353

5.375( 3,291(-4,490 3.416(-4.488| 3.541{-4,487| 3.666|-4.485{ 3,791(-4.484| 3.916|-4.482| 4,041|-4.481| 4.166|-4.480 | 4.292-4.478
5.500( 3.293|-4,615| 3.418{-4.613| 3.543}-4.612| 3.6681-4.610] 3.793|-4.609| 3,918/-4.607| 4.043|-4.606| 4.168|-4.605 | 4,295 [-4.603
5.625| 3,294 (-4,740| 3,419|-4.738 3.544|-4,737| 3.669|-4,735! 3,794 |-4.734]| 3,.919|-4.733| 4.044|-4.731| 4.169]-4.730 | 4,294 |-4,728
5,750 3.295|-4.865| 3,420(-4,863| 3.545|-4.862| 3.670|-4.860| 3.795/-4,859| 3,920)-4.858| 4.045|-4.856| 4,170(-4.855 | 4,295 [-4.853
5.875| 3.297(-4,990| 3.422)-4,988] 3.547(-4,987| 3.672|-4.985( 3.797|-4.,984| 3,922(-4,.983| 4.047{-4.981| 4.172(-4.980 | 4.297(-4.978
6.000| 3,298|-5.,115| 3.423{-5.133] 3.548|-5,112| 3.673(-5,110| 3.798{-5,109| 3,923|-5.108| 4,048|-5.106| 4.173|-5.105 | 4.298{-5,103
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TABLE IIT - DISTRIBUTION OF VELOCITY g AND FLOW DIRECTION * @ IN TRANSFORMED ~o** -PLANE
FOR EXAMPIE IV (EIBOW WITE LINEARIZED COMPRESSIBLE FLOW)
[do]
(@] [Prescrived variation in Q with arc length s along channel walls plotted in fig. 2;
(Nu) Q= 0.5, Q =1.0, g =0.80176, &y*= 0.75782, 48 = 104.07°.)
, 0 1/6 1/3 1/2 2/3 5/6 1.0
1 e q 6 q 6 q 6 q e q 6 q 0
-11/6 | 0.4009 0 4009 0 0.4009 0 0.4009 [¢] 0.4009 [o} 0,4009 0 0.4009 o]
-10/6 | .4009 01| .4009 01| .4009 .00 .4009 .00 .4009 .00] ,4009 -.01| ,4009 -.01
-9/6 .4009 01| .4009 01| 4010 .01| .4010 .00] .4010 -.01) ,4009 -.01| .4009 -.01
-8/6 .4009 02| .4010 .02 .4010 .01| .4010 .00{ .4010 -,01} ,4010 -.02| .4009 -.02
-7/6 4009 03| 4010 .03| 4011 W01} 4011 .001 .4011 -.01| ,4010 -,02| ,4009 ~.03
-6/6 4009 05| ,4011 04| 4012 02| .4013 .00[ .4012 -.02} .4011 -.04| .4008 -.05
-5/6 | .4009 .08| .4012 .07 .4015 .04 .4015 .00 ,4014 -.04| ,4012 -.07| .4009 -.08
-4/6 .4009 W14 ,4015 .12¢ .4019 .07| .4020 .00 .4018| ~-.07| .4014 -.11| .4009 -.13
-3/6 .4009 24) ,4019 .20; .4025 11| L4027 ~.01| ,4024 -.11| .4017 -.18| .4009 -.21
-2/6 .4009 401 .4026 33| .4037 171 .4039 -.03! ,4033 -.20| .4022 -.31| .4009, -.35
-1/6 .4009 701 .4041 S57) L4057 27] ,4058 -.05| .4048 -.33; ,4030 -.50| .4009 -.56
0 .4009 1.31} .4070 .96} .4093 .36 .4090 -.17| .4071 -.58] ,4042 -.84| .4009 -.92
1/6 .4072 2.82| ,4141 1.49; .4155 43| 4139 -.40| ,4104 -.99| ,4058| -1.34{ ,4009| -1.45
2/6 4243 3.88| .4268 1.77§ .4251 24 ,4207 -.87| .4148| -1,63] ,4080| -2.07{ .4009| -2.22
3/6 4489 4.00| .4444 1.468] .4377 -.38| .4295, -1.70| .4202, -2,59| .4106{ ~-3.11} .4009} -3.28
4/ .4780 3.17| .4654 .50 .4526] -1.49| .4396| -2.92] .4265| -3.90| .4135| -4.46] ,4009| -4.65
5/8 5094 1.44| .4882 -1.17| .4689; -3,16| ,4508| -4.62| .4333| -5,63| ,4137| -6,21| ,4009| -6.41
6/6 5415 -.08| 5118 -3.43| .4857| -5.34| .4621| -6,76| .4403| -7.75| .4200| -8.33| .4009| -8.52
; 7/6 L5732 -4,00| .5352| -6,23; .5024] -8.01} .4734| -9.35] .4472| -10.29] .4232| -10,85| ,4009| -11.04
8/6 .B03%|  -7.48] .5578| -9.48| .5188| -11.,10| .4844| -12.34] .4539| -13,22{ .4262| -13.74| .4009| -13.91
9/6 L6328 -11.35} .5793| -13.,12( .5340| -14.57| .4947| -15.70] .4601| -16.49| .4291| -16,97| .4009| -17,13
10/6 .6602| ~15.52{ .5994| -17,09| .5482| -18.37| .5043| -19.38| ,4659| -20.09| .4317| -20.52] .4009 | -20.67
11/6 .6855} -19.98f .6178| ~21.33| .5613| -22.46| .5131| -23.34| .4712| -23.98] .4341| -24.37] ,4009 | -24,49
¥ 12/6 .7088) -24.62| .6346| -~25.80| .5732| -26.79| .5210| -27.56| .4759| -28.12{ .4362| -28.46| ,4009 | -28.58
13/6 .7293] -29.46| .6496{ -30.47| ,5837| -31.32| .5281} -32.00| .480L| -32,49! .438L| -32.79| .4009 | -32,89
14/6 L7477 -34.45| .6629] -35.31| ,5931| -36.03| ,5343| -36,.62| .4838| -37,05| .4398| -37.31| .4009 | -37.40
15/6 .76361 -39.56| .6744] -40.27| .6013| -40.89] .5398| -41,39| .4872| -41,77| ,4413| -42.00| .4009! -42.08
< 16/6 L7769) -44.76| ,6842] -45,34| ,6084| -45.86| ,5447! -46.30| ,4902| -46.64] .4427| -46.85| ,4009 | -46.93
17/6 .7875; -50.02| .6924| -50.47} ,6146] -50,90| .5492| -51.30| ,4931| -51.63| .4440| -51.85| .4009 | -51.93 |
18/6 7953 -55.27| .6991; -55,61] .6202| -55.98) .5537| -56.36| .4961) -58,72| .4456| -56,98] ,4009 | -57.08
19/6 .8001 ~60.49f .7045| -60.72} .6257| -61.06| ,5586| -61.47| .4999| -61.91| .4477| -62.28| ,4009 | -62.44
20/6 .8018| -65,55| .7091; -65.68] .6315| -66.03| .5647| -66.53| .5055| -67.13| ,4515| -67.79! ,4009 | -68.16
21/6 .8018( ~70.32| ,7135| -70.45] .6385| -70.85| ,5730| -71.49| .5142| -72.37| ,4598| -73.46| .,4072| -74.80
22/6 .8018( ~74.81| .7186| -74.96] .6471| -75.43| .5840| -76.22] .5272| -77.368| ,4745| -78.91| ,4243| -81.03
23/6 .8018| -78,97| .7245| -79.15| .8573| -79,68| .5978| -80.59| .5441| -81,93| ,4948| -83.79| .4489 ] -86.33
24/6 .8018} -82.82| .7311| -83.01| .6690| -83.59| ,6138| -B4.57! .5641| -86,02| ,5190| -88,01| .4780 | -90.69
25/6 .8018| -86.28| .7381; -86.48| .8816| -87,07| .6313] ~-88,08] .5860| -89,55| .5455| -91.,55| ,5094 | -94.16
26/6 .8018| -89.37| .7452{ -89.56| .6947| -90.15| .6494| -91.14; ,6089| -92,57' ,5729| -94,48! ,5415{ -96,93
27/6 .8018{ -92,07| ,7523| ~92,25| ,7077{ -92,81l| .6676) -93,75| .63L%] -95,10| ,6002| -96.88] ,5732| -99,11
28/6 .8018] -94,40| ,7591} -94.57| .7203| -95.09| .6852} -95.97| .6540| -97.21| .6268| -98,83| ,6038 |-100.83
29/6 .8018| -96,39| ,7654| -96.54| ,7321| -97,02] ,7020{ -97.82)..6753| -98,94| .6522[~100,39 ,6329 |-102.17
30/6 ,8018f -98,05| .7713| -98.20| ,7432| :98.62| ,7177| -99.34| .6952(-100.34( .6759{-101.63| ,6602 |-103.19
31/6 .8018} -99,44| ,7766| -99.56] .7532| -99,94) ,7321}-100.58] .7135|-101.46] .6978|-102.59] ,€855 |-103.95
32/6 .8018} ~100.56] .7813;-100,67| ,7623|-101.01{ .7451}-101.56| .7301)-102.33| .7178]-103.31| ,7086 |~104.49
33/6 .8018] -101.47| ,7855|-101.57| .7702|-101.85| .7566|-102.33] .7449(|-102.99| .7357]-103.83| .7293 |-104.84
34/6 .8018( -102.18| ,7890|-102.26] .7772,-102.51| .7687(-102.91| .7580(-103.47| .7515;-104.18| 7477 |~105.03
/ 35/6 .8018| -102.73| ,7921|-102.80| ,7831}-103,00] ,7753|-103.34| ,7691|-103.80| .7651|-104,39| .7636 |-105.10
36/6 .8018} -103,14! ,794€{-103.20| .7880{~103.37, .7825}-103.64| .7785|-104,01| ,7764|-104.48| .7769|-105.05
37/6 L8018 -103,45; .7966|-103.49| .7920|-103.62| ,7883(-103.83] .7860)-104.12| .7855|-104.49( ,7875|-104,91
’ 38/6 .8018( ~103.66( .7982{-103.69| .7950|-103.79{ .7927|-103.95] .7917|-104.16| .7923(-104.42] -i7953 |-104.71
39/6 .8018| ~-103.81| ,7994|-103.83| .7973{-103,90| .7960|-104,02] .7957|-104.16| .7968|-104.33| ,8001 |-104.49
40/6 .8018; ~-103,90| .8002)-103.92| .7989{~103,97| ,7982(-104,05| .7982!-104.14| ,7993}-104,23] .8018 {-104.28
41/6 .8018} -103.97| .8008]~103.98| .8000}-104,01| .7996|-104.06| .7997|-104.11| .8004(-104.16] .8018 |-104.18
42/6 .8018;-104.00| .8011|-104.01| .8006{-104.03| .B004|-104.06] .8005|-104.09; .8010(-104.12| .8018 |~104.13
43/6 .8018|-104,03| ,8014{-104.03| ,8011}-104.05| .8009(-104.06| ,8010{-104.08| ,8013|-104.10| .8018 |-104.10
44/e .8018|-104,04! ,8015|-104,05| .8013|-104.05| .8013|-104.06; .8013|-104.08| .8015(-104.08; .8018 |-104.09
45/6 .8018{-104.05| .8016|-104.05| .8015|-104.,06| .8015|-104.07| .8015|-104.07| ,8016(-104.08, ,8018 |-104.08
46/6 .8018| -104.06( ,8017]-104,08| .8016|~104.06] ,8016{-104.07| .8016|-104.07| .8017|-104,07| .8018 |~104.07
47/6 .8018(-104,06( .8017;-104,06| .8017(-104.06{ .8016|-104.07| .8017{-104.07| .8017|-104.07| ,8018 |-104,07
~ 48/e .8018| -104,06| .8017|-104.06] .BO17|-104,06{ .8017(-104.07; .8017|-104.07| .8017(-104.07| .8018 [-104.07
49/6 .8018| -104.06{ .8017|-104.06{ .8017;-104.06| .8017|-104,07{ .8017}-104.07| .8017|-104.07| .8018 ~104,07
50/6 .8018| -104,06| .8018|-104,06| .8018{-104.06| .8018|-104.07| .8018{-104.07} ..8018}-104,07| .8018 |-104.07

:
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TABLE IV - DISTRIBUTION OF PHYSICAL COORDINATES x AND y IN TRANSFORMED ¢*y* -PLANE FOR
EXAMPLE IV (ELBOW WITH LINEARTZED COMPRESSTBLE FLOW)

[Prescribved variation in Q with arc length s along channel walls plotted in fig. 2;
Q =05, Q =1.0, a, = 0.80176, AY* = 0.73782, A9 = 104.07°.

Al
Ly¥

-

19082

0 1/6 1/3 1/2 2/3 5/6 1.0

x y x y x v x y x ¥ x y x y

-11/6 |-2.466|-0,760|~2.466(-0,512(-2.466-0,256-2.466| 0,001 |-2.466] 0.257{-2,466( 0,513(-2.466| 0,770
-10/6 |-2.241| -,769|-2.241| -.512|-2.241] -.256{-2.241| .0OL|-2.241| .257|-2.241]| .513|-2.241} ,770
-a/6 |-2.016| -,769|-2.016| -.512(-2.016{ -.256|-2,016| .0OL|-2.016| .257(-2,016| ,513|-2.016] .770
-8/6 |-1.791| -.769|-1.791| -.512|-1.791| -.256(|-1,791| .001|-1.791| .257|-1.791| .513|-1.791| .770
-7/6 |-1.566| -~.768|-1.566| -.512|-1.566| -.256|-1.566| .00L{-1.566] .257{-1.566| .513|-1.566| .770
-6/6 |-1.341| -.768|-1,341| -.512|-1.341| -.256|-1.341{ .001|-1.341] .257!-1.341| ,513|-1.341| .769
-5/6 |-1.116| -.768|-1.116| -.512|-1,117| -,266(-1,117| .001|-1.117| .257{-1,116| .513|-1.116| .769

-4/6 | -.891| -.768| -.892| -.511| -.892| -.255| -.892| .00l| -.892| .256| -.892| ,513| -.891| .769 P

-3/6 | -.666| -.,767| -.667| -.511| -.668| -.255| -.668| .001| -.668| . .256| -,667| .512| -.666| .768 b

-2/6 | -.441| -.766| -.443| -.510| -.444| -,254| -.444| .O0L| -.444| .256| -.443| ,511| -.441| .767 :

-1/6 | -.216| -.763| -.219| -.508| -.221{ -.254| -.221| .000| -.220| .255| -.219] .510| -.216| .765 .
0 .008| -.760| .003{ -.505| .000| -.252| .000| .000| .002| .253| .005| .507| .009| .763 ‘

1/6 .233| -.752| .223} -.500| .219| -.261| .213| -.001| .222{ .250| .22¢| .503| .234| .758

2/6 450| -.739| .438| -.494] .434] -.249| .436| -.003| .441| .245{ .449| .496| .459| .751

3/6 .656| -.72:| .645| -.488| .643| -.250| .648] -.008| .657| .237| .670| .486| .684| .740 . .

4/6 .851| -,712| .844| -.485| .846| -.253| .e55| -.016| .870[ .225| .888] .472| .908| .725 o

5/6 1,033| -.704| 1.033| -.485) 1,042} -.261| 1.057| -.029| 1,079| .208| 1.104| .452| 1.132| .703

6/6 1.205| -.703| 1.213| -.492] 1.230{ -.274| 1.254| -.049| 1.284| .184| 1.318| .425| 1.355, .674

7/6 1.366| -.710| 1.385| -.507| 1.411| -.295| 1.445| -.076| 1.485! .152| 1.529| .389| 1.577| .636

8/6 1.519| -.725| 1.548| -.529| 1.586| -.325| 1.630| -.111{ 1.681| .112| 1.737| .344| 1.797| .587 .7

2/6 1.663| -.749| 1,704| -.560| 1.753| -.363| 1.809| -.156{ 1.871| .061| 1.940| .288| 2.013| .527

10/6 1.798| ~,781| 1.852| -.600( 1.913| -.410| 1.981| -.210| 2.056 ,000| 2.138 .221} 2.226 455 [
11/6 1,926| -.822| 1,592 -.649] 2.065| -.466| 2,146{ -,274| 2,235 -.072| 2.331 2142 2.434 .368 -
12/6 2.046| -,871| 2.124| -.706] 2.208| -.532| 2.304| -.349| 2.406| -.156| 2.517 .050| 2.835 .268 C
13/6 2.157| -.928| 2.247| -.772| 2.346| -.608| 2.453| -,435| 2,569| -.251| 2.694| -.055| 2.829 .153 .
14 /6 2.261| -.993| 2.363| -.847| 2.473| -.693| 2.593} -.530| 2.723] -.357| 2.862| -.173| 3.013 024
15/6 2.356|-1.064| 2.460| -.930| 2.591| -.787| 2.723] -.636| 2.866| -.475| 3,020 -.304| 3.186| -.120
16/6 2.443(-1.143| 2.567|-1.020| 2.700| -.889| 2,843| -,751| 2.999| -.604| 3.166] -.447| 3.346| -.278 - L
17/6 2.521[-1.228| 2.655|-1.117] 2,798{-1,000| 2.952| -.875| 3.118{ -.743| 3.298| -,601| 3.492| -.449 ’ T
18/6 2.590|-1.318| 2.732(-1.220] 2.885(-1.117| 3.049|-1.007| 3.225| -.890| 3.416| -.766] 3.623| -.632
19/6 ?.650(-1.414| 2.800]|-1.330{ 2.960|-1.240| 3,132|-1.146 | 3.317|-1.046] 3.518| -,940| 3.736| -.826
20/6 2.701[-1.514| 2.858}-1.443( 3.024|-1.3€9| 3.203(-1.290| 3.395|-1.208| 3.603|-1.122| 3.830{-1.,030
21/6 2.745(-1,619] 2.905{-1.561{ 3.076|-1.501| 3,259{-1.438 | 3.456|-1.374| 3.669|~1,309| 3.901|-1,242
22/6 2.777]-1.726| 2.942|-1.681{ 3.117}-1.635| 3.303|-1.588| 3.501|-1.541| 3.715|-1.496! 3.947)-1,455
23/6 2.803|-1,836] 2.970(-1.803| 3.147}-1.770| 3,333|-1.737| 3.531|-1.707| 3,743|-1.680| 3.969|-1,661
24/6 2,820|-1,947] 2.090(-1.926| 3.167}-1.905| 3.353|-1.885| 3.548|-1.869| 3,755|-1.858| 3.974|-1.856
25/8 2,831|-2,059| 3.001{-2.048| 3.177|-2,038| 3.362|-2,030| 3.554{-2.026{ 3.756|-2,027| 3.966|-2.038
26/6 2,835(-2.17L| 3.005|-2.169{ 3.181}-2.169| 3.363|-2.171| 3.552|-2.177| 3.747(-2.1898] 3.950|-2.209
27/6 2.834(-2,283| 3.003|-2.290| 3,177|-2,297| 3.357|-2,308| 3,542|-2.322| 3.732|-2.342| 3.927|-2.369
28/6 2,827|-2.396| 2.996|-2.40%| 3.168|-2,423| 3,345(-2.440| 3.,527|-2.461| 3.712|-2.487] 3,900(-2,520
25/6 2,817|-2,508| 2.584[-2.527| 3.155|-2.,547| 3.330|-2,570! 3.508|-2.596| 3.688(-2.626; 3.871|-2.663
30/€ 2.803|-2,610| 2.969|-2.643]| 3.139|-2.668] 3.311}|-2.695 ' 3.485|-2.725| 3.662(-2,760| 3.841|-2.799 g
31/6 2.786|-2,731! 2.951|-2.758| 3.119|-2,787| 3,289{-2.818| 3,461|-2.851| 3,.635|-2.888| 3.809|-2.929 ol
32/6 2.766|-2.841] 2.931|-2.872| 3.097|-2.204| 3.266{-2.938| 3,435|-2.973| 3.606(-3.012| 3.777|-3,055 K
33/6 2.744|-2,952| 2.908(-2.985| 3.074{-3.019| 3.241]-3.055| 3.409(-3.093| 3.577|-3.133| 3.746|~3.176 '
34/6 2,721|-3.062| 2.885(|-3.097| 3.049|-3.133]| 3.215{-3,171| 3.381}-3.209| 3.548|-3,250| 3.714(-3.294 . )
35/6 2,697|-3,172| 2.8680|-3.20¢| 3.024|-3,246| 3.188|-3.284 | 3,353}-3.324| 3.518|-3.,366| 3.683|-3,409 o
36/€ 2.672|-3,281| 2.834]-3.319| 2,998(-3.358| 3,161{-3.397| 3.325|-3.437| 3.489|-3.479| 3,653} -3.522 ;0
37/6 2.646(-3.391] 2.808]{-3,430} 2.971|-3,469| 3.134]-3,509 | 3.297|-3.549| 3.460|-3.591| 3.623|-3.633
38/6 2,620|-3,500| 2.782]-3.540| 2.944|-3.572| 3.107|-3.619| 3.269|-3.860| 3.432|-3.701| 3.594|-3.744
39/6 2,593|-3,60C} 2,755]|-3.64%| 2.917|-3.689] 3.079|-3.730| 3.241|-3.770| 3.403|~-3.811| 3.565|-3.853
40/6 2.566]-3,719] 2.728|-3.759| 2.890|-3.799| 3.052|-3.839| 3,214(-3.880| 3.376/-3,921| 3,537|-3.962
' 41/6 2,539-3,828| 2,701|-3.868] 2.862[-3.908| 3.024(-3.949| 3.186|-3.990| 3.348|-4.030| 3,510|-4,071
42/6 2.512(-3,957| 2.673|-3.977| 2.835[-4.018| 2.997|-4.058| 3.159|-4.099| 3.320|-4.139| 3.482|-4.180 ‘
43/6 2.484|-4,046| 2.646(-4,087] 2.808|-4.127| 2,970|-4.168| 3.131{-4,208| 3.293|-4,249| 3.455|-4.289 :
44/8 2.457|-4,155| 2.619|-4.196| 2.780|-4.236| 2.942|-4.277| 3.104|-4.317| 3.266|-4.358| 3.427|-4.398" . I
45/6 2.430|~4.264| 2.591]-4.305| 2.753|-4.345| 2.915|-4.386| 3.077|-4.426| 3.238|-4.467/ 3.400{-4.507 e
46/6 2,402|-4.374| 2.564]|-4.414| 2.726|-4.455| 2.887|-4.495 | 3.049|~4.536| 3.211,-4.576| 3.372|-4.617
47/6 2,575| ~4,483| 2,537|-4.523| 2.698(-4.564| 2.860|-4.604 | 3.022|-4.645| 3,183 -4.685, 3.345}-4.726

48/6 2,%48]-4,592| 2,509|-4.632| 2.671|-4.673] 2.833|-4,713| 2.994|-4.754 | 3,156 -4.794| 3.318]-4.835 T

49/6 2,320 -4,701]| 2.482|-4.741| 2.644|-4.782| 2.805|-4.822| 2,967|-4.863 3.129/-4,903| 3,290|-4,944 P i

50/6 2,293|-4.810| 2,455|-4.851| 2.616(-4.891| 2.778(-4.932| 2.940|-4.972| 3,101}-5.013} 3.263-5.063 : )
»
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TABLE V ~ DISTRIBUTION OF VELOCITY .q AND FLOW DIRECTION 6 1IN TRANSFORMED qW~-PLANE FOR

EXAMPLE V (ELBOW WITH COMPRESSIBLE FLOW (7=1.4))

[Prescribed varlation in Q wlith arc length & along channel walla plotted in:
fig. 2; Qu = 0.5, Q‘d = 1.0, qd = 0.79927, AV = 0.71054, A6 = 105.510.]

%. .
N o .. 1/6 1/3 1/2 2/3 5/6 1.0
oy a 6 el e a o a |~ 8 a 6 a 6 a o
-12/6 [0.3996] o [0.3998] o [o.3996] o Jo.3998] o0 Jo.3996] © |0.3996] o |0.3998| 0
-11/6 | .3996| . .00| .3997 .00} ,3997 00| .3997 .00[ .3997 .00 3997 .00} .3996 .00
~10/6 | .399 .01| ,3997 01| 3997 00| 3997 .00| .3997|.  ,00| .3997] -.01| .3998| -.01
-9/6 | .3996 01| .3997 01| .3997 01| 3997 .00l 3997 -,01| ,3997| -.01| .3998| -.01
-8/6 | .399 02| 3997 .02 ,3998 01| .3998 .00| .3998) ~.01] ,3997| -.02| .3996| -.02
-7/6 | .3996|  .03| ,3998 .03 | 3999 .02| ,3999 .00f .3998 -.02| .3998] -.03| .3996| -.03
-6/6 | .399 .05 | '.3998 .04 .4000 03| .4000 00| .4000| -.03| .3998| -.04] .3996| -.05
-5/6 | .399 .09 ,4000 .08 .4002 04| .4003 00| .4002| -.04| .4000| -.07] .3996| -.08
-4/6 | .399 15| .4002 13| .4006 .07/ .4008 .00| .4006| -.07| .4002| -.,12| .3996] .14
-3/6 | .3996 .25 | ,4007 .22 .4014 .12| .4015] -.01| .4012| -.12| .4005| ~-.20| .3996| -,23
-2/6 | .3996 431 ,4015 .36 .4026 .18| .4028| -.05] .4022| ~,22| ,4011| -.34| .3996| -,38
-1/6 | .3996 .77 -.4030 .62 4047 30| .4049|  -.06| .4038] -.36| .4019| -.55| .3996| -.62

0 .3996| 1.45].4062| 1.06| .4086 .39 .4082| -.19| .4062| -.64] ,4031| -.92| ,3996| -1.02
1/6 .4086| 3,13 ,4137| 1.64| .4152 46| °.4134|  -.45( ,4097| -1.09| .4049| -1.48| .3996| -1,61
2/6 .4253|  4.28{ .4275| 1,93 .4255 24| 4207 -.88| .4144| -1.81| .4072{ -2.30| .3998| -2.46
3/6 .4519|  4.31( .4464| 1.54| .4389 -.48] .4300| -1.92| .4202| -2.89| ,4099] -3.46| .3996| -3.64
4/6 4830| 3,26 .4687 40| .4547] -1.74 .4408| -3.30| .4268| -4.35| ,4131] -4.97| .3996| -5.17
5/6 .5162| 1,21f .4928| -1,53| .4719| -3.64| .4524] -5.21| .4340| -6.29| .4164! -6.92] .3996| -7.13
6/6 54991 -1.61| .5175]| -4.11| .4895| ~6.10| .4643]| -7.61| .4413| -8.66 .4198| -9.28] .3996| -9.49
7/8 .5828| -5.05| .5419| -7.27| .5089| -9.09. .4762| -10.,50] .4485| -11.49| .4251| -12.08] .3996| -12.28
8/6 6144 | 8,99 ,5652] +10.92| .5236] -12.55| .4875| -13.82| ,4554| -14,74 | ,4263 | -15.29| .3996 | -15.47
9/s -6441| -13.32 | 5871 -14,98| .5393] -16.40| .4981| -17.54| .a618| -18,37] .4292| -18.86] .3996 | -19.03
10/6 | .8717| -17,98| .6074| -19.38| .5538| -20.61| ,5078| -21.61| .4677| -22.34| .4319| -22,79| .3996 | -22.94
11/6 | .6970| -22.89| .6258| ~24.06| .5669] -25.12 | .5166| -25.98| .4730| -26.62| .4343| -27.02| .3996 | -27.15
12/6 | .7197| -28.02| .6424| -28.98| .5786| -29.87| .5245| -30.62] .4777| -31.18| .4364| -31.52| .3995| -31.63
13/6 | 7599 -33.31| .6569| -34.09| .5689| -34,84| .5314] -35.468| .4818| -35.96| .4383| -36.26| .3996 | -36.36
14/6 | .7573| -38.74| .6696] -39.35| .5978| -39.98| .5375| -40.52| .4855| -40,94 | ,4400| -41.20] .3996| ~41.30
15/6 | .7719| -44.26| .6BO3| -44.74| .6056| -45.25| 5428 -45.72 .4888| -46.09| 4415 -46.35| .3996 | -46.41
16/6 | .7836| -49.84| .6891| -50.20| .6123| -50.62} .5476| -51.03| .4918] -51.37| .4429| -51.61| .3996 | -51.70
17/6 | .7922| -55.44| .6963| -55.70| .6182| -56.04 | .5522| -56.43| 4951 -56.80 | .4446| -57.07| .3996 | -57.18
18/6 | .7975| -60.96| ,7019| ~61.13| .6238| -61.44| .5573| -61.85| .4990| -62.30| .4468| -62.69| .3996 | -62.86
19/6" | .7995| -86,35 .7066| -66.45| .6297| ~66.76 | .5635| -67.25| .5047| -67.87 | .4507 | -68.57 | .3996 | -68.97 .
20/6 | .7995| -71.431 ,7110| ~71.53| .6367| -71,88| .5720 -72,51| .5138| -73.42 .4595| -74.59| .4066] -76.09
21/8 |..7993| -76.19| .7163| ~76.31| .6456( -76.73 | ,5835| -77.50| .5274| ~78.69 | .4753 | -80.35 | .4253 | -82.69
22/6 | .7993| -80.67| .7224| -80.80 | .6562| -81.27| .5979| -82.14 | .5453| -83.48| .4969| -85.45| .4519] -88.20
23/6 |- .7998| -84,69| ,7292| -84.83| .6684| -85.33| .6145| -86.27] .5662| -87.72/ .5225 ] -89.79| .4830| -92.62
24/6 | ,7993| -88.32] .7366| -88.47 | .6816| -88.97| .6327.| -89.92| .5892| -91.38] .5503| -93.41| .5162 | -96.11
25/6 | .7993| -91.55( .7442( -91.69| .6952| -92.17| 6516 -93.,06 .6129| -94.41| .5789| -96.29| .5499| -98.75
26/6 | .7993| -94.35| ,7516| -94.46] .7087| ~94.90| .6705| -95.72| .6366( -96.96 | .6073 | -98.65 | .5628 |~100.82
27/6 | .7993| -96,70| .7587| -96.81 | .7219| -97.21| .6888| -97,94| .6697| -99.04) .6347 |-100.52 | .6144 {-102.39
28/6 | .7993| -98,68| ,7653| -98.78 | ,7342| -99.14 | .7062| -99,77| .6815|-100.72| .6607 [-101.99 | 6441 |-103.57
29/6 | .7995|-100.31| ,7714|-100.40 | .7456|-100.71 | .7223[-201.25{ .7019|-102.06 | .6849 |-103,13 | 6717 |-104.45
30/6 | .7995|-101.64| ,7769|-101.72 | 7559 |-101,97 | .7370|-102.43| 7205 |-105.10| .7070 |-103.99 | ,6970 |-105.07
31/6 | ,7993/-102.68| ,7817|-102.75 | .7651|-102.97 | .7502|-103.34 | ,7573|-103.89 | ,7270 |-104.61 | ,7197 |-105.49
32/6 | .7993(-103.48 | .7858(-103.54 | .7731|-103,72 | ,7617|-104.03 | .7520 |-104,47 | ,7446 |-105.05 | .7399|-105.75
33/6 | .7993|-104,09| .7893|-104.14 | .7800{-104.28 | .7716|-104.53 | .7648(-104.88 | ,7599 [-105.33 | .7573 [-105.87
34/6 | .7993)|-104.53 | .7922|-104.56 | ,7856[-104.67 | ,7799|-104.87| .7754|-105.14 | .7726 |-105.49 | .7719|-105,89
35/6 | ,7993|-104.85 | ,7945|-104.86 | .7901[-104,95 | .7865{-105.09| .7839|-105.29 | ,7828 |-105.54 | ,7836 |-105.84
36/6 | ,7995]-105.04| .7962|-105.05 | .7935|-105.11| ,7914|-105.21| ,7903|-105.35 | .7904 |-105.52 | .7922 |-105.71
37/6 | .7993|-105.16| .7975(|-105.17 | .7959|-105.21 | .7948|-105.28| .7945 |-105.36 | .7953 |-105.46 | .7975]-105.56
38/6 | .7995|-105.22| .7985{-105.24 | .7974{-105.26 | .7969|-105.30( .7970]-105.34 | .7977 |-105.39 | .7993{-105.41
39/6 | .79951-105.26 | ,7987(-105.27| .7983}|-105.28 | ,7981-105.31| .7982|-105.33 | ,7986 |-105,35 | .7993 |-105.35
40/6 | .79931-105.29 .7990|-105.29 | .7988(-105.30 | ,7987-105.31| .7987|-105.32| ,7990 |-105.33 | .799% |-105.33
41/6 | ,7993|-105.30( ,7991|~105.30| .7990[-105.30 | .7990{-105.31| .7990 [-105.31| .7991 |-105.32 | .7993 |-105.32
42/6 | .7993|-105.31| .7992{-105.31| .7992|-105.51| .7991-105.31| .7992|-105.31| ,7992 |-105.31 | .7993 |-105.31
43/6 | .7993|-105.51| .7995|-105,31| .7992|-105,31| .7992(-105.31{ .7992|-105,31 | .7993 {-105,31 | .7993|-105.51
44/6 | .7995|-105.31| .7993|-105.51| .7993|-105.31 | .7995/-105.31| .7993 |-105,51| ,7995 |-105.31] .7983 |-105.31
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TABLE VI - DISTRIBUTION OF PHYSICAL COORDINATES x AND y IN TRANSFORMED ®V-PLANE FOR

EXAMPLE V (ELBOW WITH COMPRESSIBLE FLOW (7=1.4)) 5
[Prescribed variation in Q with arc length s along channel wglls plotted in fig. 2; 2
Q =05 Q =10, q = 0.79927, Ay = 0.71054, A6 = 105.31°.]

oy
O\ 0 1/6 1/3 1/2 2/3 5/6 1.0
Aﬂ X ¥ X M X ¥ x Y X Yy x ¥y x ¥y
—12/6 -2,832|-0,770|-2,832]|-0.513|-2.832[ ~0,256(-2,832| 0.001[-2,832| 0.258(-2,832| 0.514|-2.832| 0.771
—11/6 ~2.595| -.770{-2.595| -.513|-2.595} -.256|-2.595 .001|-2.595 .258(-2.595 .514|-2.595 771
-10/6 | -2.358{ -.770|-2.358| -.513(-2.358| -.256|-2.358 .001}-2.358 .2581-2,358 .514| -2,358 71
~-9/6 -2,122| ~,770(-2.122| -.513(-2.122| -.256(=-2.122 .001[-2.122 .258|-2.122 .514|-2,122 771
—8/6 -1.885{ -,770|~-1.885| -.513|~1.885| -,256(-1.885 .001(-1.885 .258/-1.885 .514|-1.885 70
—7/6 -1.648| ~.,770|-1.648] -.,513(-1.648| -,256(-1,648 .001}-1.648 .257|-1.648 514 -1,648 L7171
—6/6 -1,411| -,769{~1.411] -.513{-1.411| -.256(-1.412 .001|-1.411 .257(-1.411| .514|-1.411 771
—5/6 -1,174| -,769|-1.175{ -.512|-1,175| -.256|-1,175 .001|-1.175 .2571-1.175 514 -~1,174 771
—4/6 -.937| -.769| -,938] ~.512| -,939| -.256| =-.939 .00L| -.938 .257] -.938 513 -.937 770
-3/6 ~,701| -,768] -,702( -.511} -.702| -.255| -.703 .001| -.702 .257| -.702 .S513| -,701 .769
-2/8 -.464| -,767| -.466| -,510| -.467| -.255| -.467 L001| -.467 .256] -~.465 .512{ -.464 .768
-1/6 -.227| -.764{ -.230| -.508] -,232| -.254| -.233 .001| -.232 .255] -.230 510 -.227 .766

0 .009| -.760 .004} -,505 .000| -.252 .000 .000 .002 .253 .005 .507 .010 .763
1/5~ .245( -,750 W2351 -.499 .230| ~.250 .230| ~.001 .234 .250( .240] .,502 .247 .758
2/6 AT3| - T35 .460| -.492 .456| -.249 .458| -.004 .463 .244 473 495 .484 . 749
3/6 .688| ~,719 .677| -.485 .B75] -.249 .680| -.,009 .690 .235 704 .483 720 L1737
4/6 .8901| -,705 .884] -.482 .887| -.253 .897| -.019 .913 .220 .934 466 .956 .719
5/6 1,080 -,697| 1.081| -.483} 1.091| -,263] 1.109| -.035| 1.132 .200| 1.161 4430 1.192 .693
6/6 1.257| ~-.698| 1.268| -.492] 1.287| -.270] 1.,314| -.058| 1.347 .172| 1,385 411 1.426 .659
7/6 l.424| -,707| 1.446] -.510| 1.475| -.304| 1.513| -.089} 1.558 .135{ 1,605 .369| 1.659 .615
8/6 1.581| -.726| 1.615] -.537] 1.€56| -,338] 1,705 -.130{ 1.760 .0881 1.822 .317| 1.888 .558
9/6 1.729f -.755| 1,775| -.574| 1.828| -.383| 1,890| -.182| 1.958 .029 2.033 .252| 2.115 .488
10/6 1.867) -.794| 1.926] ~.620| 1.992| -.438| 2.067| -.245| 2.149| -.,042| 2.239 174 2.336 .403 *

11/6 1.897) ~.842| 2,069] -.677| 2.148| -.503| 2.236| -.320) 2.332| -.125| 2.437 .082| 2.550 .303
12/6 2.117| -.899 2.202| ~-.743| 2.295| -.579]| 2.396| -.406; 2,507 -.221} 2.627| -.024| 2.757 .187
13/6 2.22¢| -.966| 2.326| -.820| 2.432| -.666| 2.546| -.503| 2.671| -.330| 2.806| -.145| 2.953 .055
14/6 2.331|-1.,040 2.441| -,905]| 2.558| -.763| 2.686| -.612{ 2.824| -.452| 2.974| -.279| 3,137| -.094 -
15/8 2.424}-1,122] 2.545| ~.999| 2.674| -.869| 2.814| -.732| 2.965| -.585| 3.129] ~.420; 3.308| -.258
16/6 2.506}-1,211} 2.638|-1.100| 2.778| -.984| 2.929| -.862| 3.082| -.730| 3.270| -.589 3.463| ~.436
17/6 2.579]-1,306{ 2.720|-1.209| 2.870}{-1.108} 3,031|-1.000| 3.205| -.886| 3.394| -.762{ 3.601| -.629
18/6 2.642]-1.407| 2.791)-1.325| 2.949|-1.238| 3.118|-1.147| 3.301|-1.050{ 3,501| -.946| 3.719| -.834 .
19/6 2.694|-1,513| 2.850{-1.445| 3.015|-1.374; 3.191(-1.299| 3,381(-1.221| 3.588|-1.138| 3.816|-~1.050
20/86 2.737|-1.624| 2.898{-1.570| 3.068|-1.514! 3.248(-1.456] 3.443/-1.39€| 3.654}|-1.335]| 3.887|-1.274
21/6 2,770{-1.738| 2.935]|-1.697| 3.107|~1.656] 3.290|-1.614| 3.48¢|-1.572| 3.698!-1.533| 3.928|-1.499
22/6.| 2.794|-1.854| 2.961{-1.826[ 3.135|-1.799| 3.319{-1.772| 3,513|-1.747| 3,722}-1,727, 3,945,-1,714
23/6 2.809|~1,971| 2.977|-1.956| 3.152|-1.940| 3.334|-1.927| 3,527|-1.917 3.729(-1.912| 3.944|-1.916
24/6 2.816|-2.089 2.985|-2.085| 3.159|-2,081] 3.339[-2.079| 3.528(-2.081| 3.724|-2.089| 3.929|-2,1086
25/6 2.816|-2,208| 2.985|-2.212| 3.157|-2.218| 3.33€|-2.226| 3.520|-2.738| 3.710{-2.256] 3.90€ -2.281
26/6 2.810}-2.326| 2.978]|-2.339| 3.149{-2,353| 3.325{-2.369| 3.505|-2.389| 3.689(-2.414| 3.878|-2.446
27/6 2,799|-2,444| 2,965|-2.463]| 3.135|~2.484| 3.308|-2.507| 3.484|-2.533| 3.664|-2.564| 3.846-2,601
28/6 2,783|-2,561| 2.948}-2.586| 3.116|-2.613| 3,287|-2.341| 3.460|-2.672} 3.635|-2.708] 3.812(-2.748
29/6 2.763|-2.678] 2.928|-2.708| 3.094|-2.739| 3.263|-2.771| 3.433|-2.807| 3.604|-2.845 3.777;-2.887
30/6 2.740|-2.794| 2.904|-2.828| 3.069|-2.862] 3.236{-2.898| 3.404|-2.936| 3.573(-2.977| 3.742|-3.021
31/6 2.715(-2,910] 2.879|-2,947| 3.043|-2.984| 3,208{-3.022| 3.374|-3.063| 3.540|-3.105/ 3,707|-3,150
32/6 2.689|-3,025| 2,851|-3,064| 3.014|-3.104| 3.178{-3.144| 3.342|-3.186| 3.507(-3.229| 3.672|-3.274
33/6 2.560|-3.140| 2.822|-3.181] 2.985|-3.222| 3.148|-3.264| 3.311|-3.307| 3.474}-3.351] 3.637[-3.396
34/6 2.631|-3.255| 2,793|-3.297| 2.954|-3.339| 3.117|-3.382] 3.279|-3.425| 3.441|-3.470; 3.603|-3.515
35/6 2.601|-3.369f 2.762|-3.412| 2.924|-3.455| 3.085{-3.498| 3.247|-3.542| 3.409|-3.587| 3.570(-3.632
36/6 2.570|-3.484| 2,731|-3,527| 2.893|-3,571| 3.054|-3.614| 3.215(-3.658| 3.376|-3,703| 3.,537)-3.748
37/6 2.540(-3,598] 2,701|-3.642| 2.862|-3.685] 3.023|-3,729| 3.184|-3.773| 3.344|-3.818 3.505|-3.862
38/6 2.509{-3.712! 2.669|-3.756| 2.830|-3.,800| 2.991|-3.844| 3.152(-3,888| 3.313|-3.932| 3.474|-3.977
39/6 2.477(-3.827] 2.638|-3,871| 2.798|-3,915| 2,960|-3.959| 3.121(-4.003| 3.281{-4.047| 3.,442|-4.091
40/6 2.446(-3,941} 2.607|-3,985| 2.768}-4,029| 2.929|-4.073| 3.089|-4.117| 3.250|-4.161| 3.411|-4.205
41/6 2.415|-4.055| 2.576|-4,099| 2.736}-4.143| 2.897|-4.187| 3.058(-4.232| 3.219/-4.275| 3.380(-4.,319
42/8 2.384(-4.169| 2.544]-4.213| 2.705|-4.257| 2.866{-4.301| 3.027}-4.345| 3.187|-4.389| 3.348|-4,433
43/6 2.352|-4,284( 2.513{-4.328| 2.674|-4.372| 2.835]|-4.416| 2,995{-4.460| 3,156|-4.504| 3.317|-4.548 A
44/6 2.321|-4.398| 2.482|-4.442| 2.643|-4.486| 2.803|-4.530| 2.964|-4.574| 3,125,-4.618{ 3.286(-4.662
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Figure 1. - Magnitude and direction of velocity at point
in xy-plane.
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-Figure 3. - Prescribed distribution of log, Q as function of ¢ along
! channel,walls for example I.



NACA TN 2593

52

' 2306 - . . e s o ; ° a

*2 9anITI uTr usAaTd AL3Too0TaA poqraosaad fMoTJ aTaTrsssadwoouT
*I otrduexd a0l sueTd-Nd powIOISUBIZ UT g UOTF03JTP MOTI PuB 3 LJTOOTSA JUEBASUOD JO SaUTT - °*F oanITd

&
9*2 %z 2'2 0°'2 g'T 9T %'T 2T O°'T 8° 9°* A A 0 g2'- ¥~ 9°-
[T 1T 7P 1T 717 71T 1T 1T 1T 1T 71T T T T T 7 T T T T T T T T 1T T 77 7T 7T 171
L —0
1T ]
m .
- L —2
- -G —
L € —7
T
— Imm-ll - ‘lw -— - m|.|NI—- W-A w'lwlk.“mrom " ..,.l L wcd L] H—Jiﬂm. - ._”mqo @ -
| t 9"
| G ]
- L —18°
m —
B HHHWI
- B 75 —10°T
RN AN NN NN AN NN EN AN TN SURNN NN SN NN (NN NS SR A N U A OO JUU S Y (U Y N U DO O
g2 Tv'¢ <S'¢ 0'¢ 8'T 9T ¥%T =o't Or°T g° 9° 7 2" 0 2~ %= 9°-



53

NACA TN 2593

g°

g°

‘g 9anBTJ ur UsAT3 L9To0Ton paqraosead fMOTI oTqTssoadwoouT
°I oTduwexe 0] suerld=-fdb powIOISUBIL UT 884BUTPJIOCOD A PpuUB X 4UBASUOD JO SOUTT - °G 8JnITd

&
¥'2_ 2'2_ 0'8 8°T  9°T #%°T 2T 0°T 8§ 9° 7 2 . . .
0 B'-  F°=  g°-
e e N W
1 —o
 — w- —_
9° —e’
7 -
c* —7"
0*'c 8z 9°Z . O oe- 0 0f
¥:2 2!z 0/2 8T 9T ¥.T 2'T0°T 8° 9° %° 2° 0 2°=-%'-9°=8°=0°T-
_ | 1 r 1 2" —9° |
9° -8 |
I DS, |
- —0°T
N NS T A NN NN N N NN NN SO NN U AOUUN (OO NS SO N N MU N H (I S Y O
%'z e'z o0'Z 8T 91 %'t et 01 8 g° 7 z° 0 2= % - 9°-




NACA TN 2593

54

. - :
*2 2an3TJ UT USATH A3To0Tsa paqiadssad
fMory orqrssaadwoour I ardwexs Joj aueTd-Ax TeOoTSAYd uo SBUTT TBTIU930d-£3TO0TOA DPUE SIUTTWRAILS -~ *°9 2anITd
< .
2°¢ 8°2 $°e o2 9°1 eI g°* ¥ 0 ¥ - 8°- c I~ 9°1-
| [ I I
gl 1 T 1 T T 1 [ I I _ T oer-
- o —
8"~ |— _ig*-
setT’
0se*®
¥ -— —%°-
SLE" |
I i vl (e o il (ol e ol (o (s by - _ TO0S T _ S -1°
b EERELER R EER I ik B ST S R T £
BT BT 1167816 18 Jo— 8 —fo—o—f —IS 5138 o S o t S o ] b —
— Ge9°
¥ —¥
S/
GLB™
|®-
8° —
00" T —
A
o —e 1
o * N I N N | I T _ R O Y B I
o°e 8°c ¥°e o‘e 9°1 ARS 8° ia o ¥ - 8" 21 9
X



55

N
]
T}
[AN]
B
=
=

. *2 aanBTF uT uoaTd £3T00ToA poqraosaxd €moTI sTqrssaxdmoour
*I oTdmexe aoJ ouwrld-Ax TBOTSAUYd UT .g UOIIOSITD MOTJ pue ® KqTooTaa QUBLEUOD JO SBUTT - '°L 2an3TL

X
z2*e 8z 72 o'z 9T 2T 8" 7 0 3 - 8- 2 1= 9°1-
N rr t 1 1T T 71117 1 1T 1T 7T 1T 1T -7 T T 1 [
- - % N
—_ Tt

g — _

. &
| L —

S
¥ — [ —

- | .
2 66° T ToE C6 08 L8° wg' _18° BL° Gl- zl- 69" wﬁ.- ¢9* 09° 18° T gt - is'0 ® ]
—_ Wl - 1

ml
3 |— L O
6~ ]

-
— 1T~ 4
8 |— Fop o 1
2°T [— ]
: | I A NSO DU NN SO O B L] |
_ N_.m m._m _ «_.N _ o_m _ 3T - _ T CH 7 0 7 i AR 9°T-
X




NACA TN 2593

56

2306

*(8g) uoTyendm

*1I oTdmexs J0J TTBA ToUUBYD SuoT® UY3BUS] oIB JO UOTIOUNJ SB UOTINQGIIISTP A3TO0ToA Paqriosaxd - °g oIn3td

VOVN

-+

0="7
03 oT1303dmAsy

g*



NACA TN 2593

Figure 9. - Prescribed distribution of logg Q_asvfunqtidn of ¢ along

channel walls for example II.
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Figure 11.- - Streamlines and velocity-potential lines in physical xy-plane for example
Incampressible flow; prescribed velocity given in figure 8.
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Figure 12. - Lines of constant velocity Q and flow direction 6 in physical xy-plane for
example II. Incompressible flow; prescribed velocity given in figure 8.
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- Lines'of constant .velocity Q and flow direction 6 inAtransformed

Incompressi-

o¥-plane for example III.

An enlarged print of this figure is enclosed.)
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Figure 14.

ble flow; prescribed velocity given in figures 2 and 13.
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Figure 15. - Streamlines and velocity-potential lines in physical xy-plané for example III.
Incompressible flow; prescribed velocity given in figures 2 and 13.,
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Figure 16, - Lines of constant velocity @ and flow direction 6 1in physical xy-plane for
example III. Incampressible flow; prescribed velocity given in figures 2 and 13,
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O*y*-plane for example IV.

Linear-
ple IIT

gth along channel walls same as for exam

his figure is enclosed.)

3 brescribed velocity as function of arc len

ized compressible flow

Figure 17. - Lines of. constant velocity q and flow direction @ in transformed
(fig. 2)

(An enlarged print of t

and with gqgq equal to 0.80176.
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Figure 18. - Streamlines and velocity-potential lines in physical xy-plane for example IV.
Linearized compressible flow; prescribed velocity as function of arc length along channel
walls same as for example III (fig. 2) and with a9y equal to 0.80176.
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' Figure 19. - Lines of constant velocity g and flow direction 6 in physical xy-plane for
example IV. Linearized compressible flow; prescribed velocity as function of arc length
along channel walls same as for example III (fig. 2) and with g3 equal to 0.80178.
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Figure 20. - Streamlines and velocity-potential lines in physical xy-plane for example V.
Compressible flow (v = 1.4); prescribed velocity as function of arc length along
channel walls same as for examples III and IV (fig. 2) but with q4q equal to 0.79927.
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Figure 21, '- Comparison of channel wall shapes for compressible flow (example V) with ¢ equal to 1.4

and for linearized compressible flow (example IV) for same prescribed velocity as function of arc
length along channel walls (fig. 2).
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| flow direction 6 1in transformed @y-plane for example II. Incompressible flow; prescribed velocit;

®
1.0 1.2 1.4 1.6 1.8 2.0 2.2 24 2,6 2.8 3,0 3.2 3,4 3.6 3.8 4.0
I T | ] I T T I T I | T I ] T I
Q 6, deg
T 0.51 -92
R M Sl T (- &
- 1.6
66




Tt T 1 T 1 1 1 1 1 [ T/
1.0
-—.8
| 1
.85 .90 .55 .99 | v
—.4
— 0

:I. Incompressible flow; prescribed velocity given 1n figure 8.

2.8 3.0 3.2 3.4. 3.6 3.8 47.0 4.2 4’04 4‘06 4.8
I

! 1 I ] ! I |




1.1

<9I+ | ‘II“II\ lII
‘-‘===-"= :
Pgta=ncus:
i | ",“"E-
."‘O’é‘
28 _1gi8 “—'— 88“
ﬁo’oéy,‘ge‘fé‘_

Figure 14. - Lines of

constant velocity @ and flow direction 6

in transfo:
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